Quantifying Size Effects on Thermal Transport in CsPbBr3 Nanocrystal Films

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jee Yung Park, , , Du Chen, , , Shunran Li, , , Yi Xia, , , Benjamin T. Diroll, , and , Peijun Guo*, 
{"title":"Quantifying Size Effects on Thermal Transport in CsPbBr3 Nanocrystal Films","authors":"Jee Yung Park,&nbsp;, ,&nbsp;Du Chen,&nbsp;, ,&nbsp;Shunran Li,&nbsp;, ,&nbsp;Yi Xia,&nbsp;, ,&nbsp;Benjamin T. Diroll,&nbsp;, and ,&nbsp;Peijun Guo*,&nbsp;","doi":"10.1021/acs.nanolett.5c03215","DOIUrl":null,"url":null,"abstract":"<p >Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic applications due to their strong quantum confinement, near-unity photoluminescence quantum yields, and tunable emission characteristics. However, their modest thermal stability remains a challenge, particularly at smaller core diameters due to enhanced phonon scattering at inorganic core-organic ligand interfaces. In this study, we directly quantify size-dependent thermal conductivity (κ) in lecithin-capped CsPbBr<sub>3</sub> NC thin films using a transducer-free, vibrational pump–visible probe (VPVP) spectroscopy technique. A mid-infrared pump thermally excites the ligand shell, while a broadband probe tracks transient reflectance change correlated to lattice temperature decay. Finite-element modeling of the decay dynamics yields κ values from 0.13 to 0.16 W·m<sup>–1</sup>·K<sup>–1</sup> for NC films with sub-10 nm core diameter, significantly lower than those of its bulk counterpart. A steep κ suppression with decreasing NC size emphasizes the dominant role of ligand shells and boundary effects in thermal transport.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14286–14292"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic applications due to their strong quantum confinement, near-unity photoluminescence quantum yields, and tunable emission characteristics. However, their modest thermal stability remains a challenge, particularly at smaller core diameters due to enhanced phonon scattering at inorganic core-organic ligand interfaces. In this study, we directly quantify size-dependent thermal conductivity (κ) in lecithin-capped CsPbBr3 NC thin films using a transducer-free, vibrational pump–visible probe (VPVP) spectroscopy technique. A mid-infrared pump thermally excites the ligand shell, while a broadband probe tracks transient reflectance change correlated to lattice temperature decay. Finite-element modeling of the decay dynamics yields κ values from 0.13 to 0.16 W·m–1·K–1 for NC films with sub-10 nm core diameter, significantly lower than those of its bulk counterpart. A steep κ suppression with decreasing NC size emphasizes the dominant role of ligand shells and boundary effects in thermal transport.

Abstract Image

量化尺寸对CsPbBr3纳米晶薄膜热输运的影响。
胶体卤化铅钙钛矿纳米晶体(LHP NCs)由于其强量子约束、近单位光致发光量子产率和可调谐的发射特性,是光电子应用中很有前途的半导体材料。然而,它们适度的热稳定性仍然是一个挑战,特别是在较小的核直径下,由于无机核-有机配体界面上声子散射增强。在这项研究中,我们使用无传感器、振动泵可见探针(VPVP)光谱技术直接量化了卵磷脂覆盖的CsPbBr3 NC薄膜中尺寸相关的导热系数(κ)。中红外泵浦热激发配体壳,而宽带探针跟踪与晶格温度衰减相关的瞬态反射变化。基于有限元模型的衰减动力学结果表明,芯径低于10 nm的NC薄膜的κ值为0.13 ~ 0.16 W·m-1·K-1,显著低于体材薄膜。随着NC尺寸的减小,κ的急剧抑制强调了配体壳和边界效应在热输运中的主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信