A variome-transcriptome-metabolome network links GABA biosynthesis to stress resilience in maize

Yunyun Wang, Dan Sun, Yamin Duan, Aiqing Yang, Xiaoyi Yang, Tianze Zhu, Yuxing Yan, Wei Li, Wenye Rui, Shuai Fang, Baoqing Wang, Yimei Tian, Houmiao Wang, Fanjun Chen, Zhongtao Jia, Qingchun Pan, Zefeng Yang, Lixing Yuan, Chenwu Xu, Pengcheng Li
{"title":"A variome-transcriptome-metabolome network links GABA biosynthesis to stress resilience in maize","authors":"Yunyun Wang, Dan Sun, Yamin Duan, Aiqing Yang, Xiaoyi Yang, Tianze Zhu, Yuxing Yan, Wei Li, Wenye Rui, Shuai Fang, Baoqing Wang, Yimei Tian, Houmiao Wang, Fanjun Chen, Zhongtao Jia, Qingchun Pan, Zefeng Yang, Lixing Yuan, Chenwu Xu, Pengcheng Li","doi":"10.1093/plcell/koaf221","DOIUrl":null,"url":null,"abstract":"Root metabolites are essential for plant development and environmental stress adaptation. However, the genetic basis controlling root metabolome variation in crops and its role in stress resilience remain largely uncharacterized. In this study, we employed a comprehensive multi-omics approach, integrating root metabolome and transcriptome profiles of 273 maize (Zea mays L.) inbred lines at the seedling stage. Our analysis annotated 407 metabolites, of which 155 exhibited significant correlations with root traits. Using a variome-transcriptome-metabolome association (VTM) network, we identified the glutamate decarboxylase (GAD) gene ZmGAD as a crucial regulator that enhances root growth and stress tolerance by modulating gamma-aminobutyric acid (GABA) biosynthesis. ZmGAD-derived GABA confers stress tolerance by regulating stomatal aperture and scavenging reactive oxygen species. A transcription factor, ZmZIM2, acts as a negative regulator of ZmGAD expression and GABA accumulation. Moreover, a 2-bp insertion in ZmGAD causes a premature translation termination, resulting in reduced GABA content, shorter roots, and decreased stress tolerance in maize. The reduced frequency of a 2-bp deletion suggests it may have been inadvertently lost during maize domestication and modern breeding. This study elucidates the genetic and molecular framework underlying root metabolite regulation in maize and provides a valuable resource for enhancing root traits and stress tolerance in maize breeding.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Root metabolites are essential for plant development and environmental stress adaptation. However, the genetic basis controlling root metabolome variation in crops and its role in stress resilience remain largely uncharacterized. In this study, we employed a comprehensive multi-omics approach, integrating root metabolome and transcriptome profiles of 273 maize (Zea mays L.) inbred lines at the seedling stage. Our analysis annotated 407 metabolites, of which 155 exhibited significant correlations with root traits. Using a variome-transcriptome-metabolome association (VTM) network, we identified the glutamate decarboxylase (GAD) gene ZmGAD as a crucial regulator that enhances root growth and stress tolerance by modulating gamma-aminobutyric acid (GABA) biosynthesis. ZmGAD-derived GABA confers stress tolerance by regulating stomatal aperture and scavenging reactive oxygen species. A transcription factor, ZmZIM2, acts as a negative regulator of ZmGAD expression and GABA accumulation. Moreover, a 2-bp insertion in ZmGAD causes a premature translation termination, resulting in reduced GABA content, shorter roots, and decreased stress tolerance in maize. The reduced frequency of a 2-bp deletion suggests it may have been inadvertently lost during maize domestication and modern breeding. This study elucidates the genetic and molecular framework underlying root metabolite regulation in maize and provides a valuable resource for enhancing root traits and stress tolerance in maize breeding.
一个变异组-转录组-代谢组网络将GABA生物合成与玉米的胁迫恢复力联系起来
根代谢产物是植物发育和适应环境胁迫的重要物质。然而,控制作物根代谢组变异的遗传基础及其在逆境恢复中的作用在很大程度上仍不清楚。在这项研究中,我们采用了综合的多组学方法,整合了273个玉米(Zea mays L.)自交系苗期的根代谢组和转录组图谱。我们的分析注释了407种代谢物,其中155种与根性状显著相关。利用变异组-转录组-代谢组关联(VTM)网络,我们发现谷氨酸脱羧酶(GAD)基因ZmGAD是通过调节γ -氨基丁酸(GABA)生物合成来促进根生长和逆境耐受性的关键调节因子。zmgad衍生的GABA通过调节气孔孔径和清除活性氧来赋予耐受性。转录因子ZmZIM2作为ZmGAD表达和GABA积累的负调节因子。此外,在ZmGAD中插入2个bp会导致翻译过早终止,导致玉米GABA含量降低,根变短,抗逆性降低。2 bp缺失频率的降低表明,它可能是在玉米驯化和现代育种过程中无意中丢失的。本研究阐明了玉米根系代谢调控的遗传和分子框架,为提高玉米根系性状和抗逆性育种提供了有价值的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信