Yi Xiao, Ying Xu, Han Wang, Fan Yang, Xiao-Hong Ding, Tong Fu, Li Chen, Xi Jin, Ya-Xin Zhao, Ying Wang, Fenfang Chen, Zhi-Ming Shao, Yi-Zhou Jiang
{"title":"HEBP2-governed glutamine competition between tumor and macrophages dictates immunotherapy efficacy in triple-negative breast cancer","authors":"Yi Xiao, Ying Xu, Han Wang, Fan Yang, Xiao-Hong Ding, Tong Fu, Li Chen, Xi Jin, Ya-Xin Zhao, Ying Wang, Fenfang Chen, Zhi-Ming Shao, Yi-Zhou Jiang","doi":"10.1016/j.cmet.2025.08.009","DOIUrl":null,"url":null,"abstract":"Immunotherapy demonstrates limited efficacy in triple-negative breast cancer (TNBC), influenced by intricate metabolic interactions within the tumor microenvironment. Here, we developed a single-cell RNA sequencing (scRNA-seq) immunotherapy cohort (<em>N</em> = 27) and a spatial transcriptomics cohort (<em>N</em> = 88) to elucidate metabolic crosstalk associated with therapeutic efficacy in TNBC. We illustrated that heme binding protein 2 (HEBP2)<sup>high</sup> tumor cells (featured by active glutathione metabolism) and CCL3<sup>+</sup> macrophages (characterized by oxidative metabolism) indicated immunotherapy efficacy and were quantitatively and spatially negatively correlated. HEBP2-mediated glutamine face-off between these cell types induced this phenomenon. Mechanistically, HEBP2 disrupted FOXA1 cytoplasmic phase separation, promoting its nuclear translocation to upregulate glutathione S-transferase P1 (GSTP1) expression and glutamine consumption in tumor cells. This metabolic shift induced ferroptosis of CCL3<sup>+</sup> macrophages, impairing the antitumor immunity. The utilization of a GSTP1 inhibitor sensitized TNBC to immunotherapy. Collectively, we delineate a tumor-macrophage metabolic checkpoint governed by the HEBP2/GSTP1 axis and pioneer single-cell-level immunometabolism as a paradigm for evaluating immunotherapeutic vulnerabilities.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"35 1","pages":""},"PeriodicalIF":30.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.08.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy demonstrates limited efficacy in triple-negative breast cancer (TNBC), influenced by intricate metabolic interactions within the tumor microenvironment. Here, we developed a single-cell RNA sequencing (scRNA-seq) immunotherapy cohort (N = 27) and a spatial transcriptomics cohort (N = 88) to elucidate metabolic crosstalk associated with therapeutic efficacy in TNBC. We illustrated that heme binding protein 2 (HEBP2)high tumor cells (featured by active glutathione metabolism) and CCL3+ macrophages (characterized by oxidative metabolism) indicated immunotherapy efficacy and were quantitatively and spatially negatively correlated. HEBP2-mediated glutamine face-off between these cell types induced this phenomenon. Mechanistically, HEBP2 disrupted FOXA1 cytoplasmic phase separation, promoting its nuclear translocation to upregulate glutathione S-transferase P1 (GSTP1) expression and glutamine consumption in tumor cells. This metabolic shift induced ferroptosis of CCL3+ macrophages, impairing the antitumor immunity. The utilization of a GSTP1 inhibitor sensitized TNBC to immunotherapy. Collectively, we delineate a tumor-macrophage metabolic checkpoint governed by the HEBP2/GSTP1 axis and pioneer single-cell-level immunometabolism as a paradigm for evaluating immunotherapeutic vulnerabilities.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.