Gradient microstructure-mediated superior torsional properties in a metastable β Ti-55531 alloy

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yanyan Zhao , Chaowen Huang , Jiang Yang , Tianxin Li , Dan Liu , Junyu Chen , Mingpan Wan , Xing Ran
{"title":"Gradient microstructure-mediated superior torsional properties in a metastable β Ti-55531 alloy","authors":"Yanyan Zhao ,&nbsp;Chaowen Huang ,&nbsp;Jiang Yang ,&nbsp;Tianxin Li ,&nbsp;Dan Liu ,&nbsp;Junyu Chen ,&nbsp;Mingpan Wan ,&nbsp;Xing Ran","doi":"10.1016/j.jallcom.2025.183953","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores a gradient microstructure design strategy for Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531) alloy, utilizing high-frequency electromagnetic induction quenching (HFEIQ) to establish a surface-to-core microstructural gradient that optimizes torsional properties. Through synergistic integration of HFEIQ and aging treatments, we fabricated a hierarchical gradient microstructure characterized by nanoscale secondary α (α<sub>s</sub>) lamellae at the surface to enhance strength, while retaining semi-equiaxed primary α (α<sub>p</sub>) phases in the core to preserve ductility. The optimized gradient structure achieved remarkable mechanical improvements, with the HFEIQ-5.6 s specimen demonstrating a maximum shear stress (τ<sub>max</sub>) of 1158.08 MPa—representing an 8.75 % enhancement over conventional bimodal microstructures—while retaining 9.63 % shear ductility, thereby achieving an exceptional strength-ductility balance. Microstructural analysis reveals that the gradient structure promotes dislocation accumulation at α<sub>s</sub>/β<sub>r</sub> (retained β matrix) interfaces and deformation twinning within α<sub>s</sub> lamellae, enabling coordinated plastic deformation. These mechanisms, tailored by the gradient design, are critical for the enhanced properties. However, prolonged HFEIQ time (5.7 s) results in the coarsening of α<sub>s</sub> lamellae, which alleviates stress concentration and consequently reduces twin formation, thereby diminishing the strengthening effect. This work demonstrates that precisely controlled gradient microstructures can optimize the mechanical response of Ti-55531 alloy, offering a promising pathway for advanced structural applications.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1042 ","pages":"Article 183953"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825055148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores a gradient microstructure design strategy for Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531) alloy, utilizing high-frequency electromagnetic induction quenching (HFEIQ) to establish a surface-to-core microstructural gradient that optimizes torsional properties. Through synergistic integration of HFEIQ and aging treatments, we fabricated a hierarchical gradient microstructure characterized by nanoscale secondary α (αs) lamellae at the surface to enhance strength, while retaining semi-equiaxed primary α (αp) phases in the core to preserve ductility. The optimized gradient structure achieved remarkable mechanical improvements, with the HFEIQ-5.6 s specimen demonstrating a maximum shear stress (τmax) of 1158.08 MPa—representing an 8.75 % enhancement over conventional bimodal microstructures—while retaining 9.63 % shear ductility, thereby achieving an exceptional strength-ductility balance. Microstructural analysis reveals that the gradient structure promotes dislocation accumulation at αsr (retained β matrix) interfaces and deformation twinning within αs lamellae, enabling coordinated plastic deformation. These mechanisms, tailored by the gradient design, are critical for the enhanced properties. However, prolonged HFEIQ time (5.7 s) results in the coarsening of αs lamellae, which alleviates stress concentration and consequently reduces twin formation, thereby diminishing the strengthening effect. This work demonstrates that precisely controlled gradient microstructures can optimize the mechanical response of Ti-55531 alloy, offering a promising pathway for advanced structural applications.
梯度显微组织介导的亚稳β Ti-55531合金优异扭转性能
本研究探索了Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531)合金的梯度组织设计策略,利用高频电磁感应淬火(HFEIQ)建立了优化扭转性能的表面到核心的微观组织梯度。通过HFEIQ和时效处理的协同集成,制备了一种以纳米级次生α (αs)片层为特征的分层梯度微观结构,其表面具有纳米级次生α (αs)片层,以提高强度,同时在核心保留半等轴初级α (αp)相以保持延展性。优化后的梯度结构获得了显著的力学性能改善,HFEIQ-5.6 s试样的最大剪切应力(τmax)为1158.08 mpa,比传统双峰微观结构提高了8.75%,同时保持了9.63%的剪切延性,从而实现了卓越的强度-延性平衡。显微组织分析表明,梯度结构促进了αs/βr(保留β基体)界面的位错积累和αs片层内的变形孪晶,实现了协调的塑性变形。这些由梯度设计量身定制的机制对于增强性能至关重要。然而,延长HFEIQ时间(5.7 s)会使αs片层变粗,从而减轻应力集中,减少孪晶的形成,从而使强化效果减弱。该研究表明,精确控制梯度组织可以优化Ti-55531合金的力学响应,为先进的结构应用提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信