Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference.

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-08-01 Epub Date: 2025-03-14 DOI:10.1016/j.jpha.2025.101265
Junyu Zhang, Jie Peng, Chaolun Yu, Yu Ning, Wenhui Lin, Mingxing Ni, Qiang Xie, Chuan Yang, Huiying Liang, Miao Lin
{"title":"Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference.","authors":"Junyu Zhang, Jie Peng, Chaolun Yu, Yu Ning, Wenhui Lin, Mingxing Ni, Qiang Xie, Chuan Yang, Huiying Liang, Miao Lin","doi":"10.1016/j.jpha.2025.101265","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression. Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials. In this study, we integrated large-scale plasma proteomics, genetic-driven causal inference, and experimental validation to identify prioritized targets for DKD using the UK Biobank (UKB) and FinnGen cohorts. Among 2844 diabetic patients (528 with DKD), we identified 37 targets significantly associated with incident DKD, supported by both observational and causal evidence. Of these, 22% (8/37) of the potential targets are currently under investigation for DKD or other diseases. Our prospective study confirmed that higher levels of three prioritized targets-insulin-like growth factor binding protein 4 (IGFBP4), family with sequence similarity 3 member C (FAM3C), and prostaglandin D2 synthase (PTGDS)-were associated with a 4.35, 3.51, and 3.57-fold increased likelihood of developing DKD, respectively. In addition, population-level protein-altering variants (PAVs) analysis and <i>in vitro</i> experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD, through the classic NLR family pyrin domain containing 3 (NLRP3)-caspase-1-gasdermin D (GSDMD) apoptotic axis. Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 8","pages":"101265"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic kidney disease (DKD) with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression. Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials. In this study, we integrated large-scale plasma proteomics, genetic-driven causal inference, and experimental validation to identify prioritized targets for DKD using the UK Biobank (UKB) and FinnGen cohorts. Among 2844 diabetic patients (528 with DKD), we identified 37 targets significantly associated with incident DKD, supported by both observational and causal evidence. Of these, 22% (8/37) of the potential targets are currently under investigation for DKD or other diseases. Our prospective study confirmed that higher levels of three prioritized targets-insulin-like growth factor binding protein 4 (IGFBP4), family with sequence similarity 3 member C (FAM3C), and prostaglandin D2 synthase (PTGDS)-were associated with a 4.35, 3.51, and 3.57-fold increased likelihood of developing DKD, respectively. In addition, population-level protein-altering variants (PAVs) analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD, through the classic NLR family pyrin domain containing 3 (NLRP3)-caspase-1-gasdermin D (GSDMD) apoptotic axis. Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.

利用整合组学数据挖掘和因果推理对糖尿病肾病的潜在药物靶点进行优先排序。
糖尿病肾病(DKD)随着全球患病率的增加,缺乏有效的治疗靶点来阻止或逆转其进展。在随机临床试验中,有因果遗传证据支持的治疗靶点更有可能成功。在这项研究中,我们利用UK Biobank (UKB)和FinnGen队列整合了大规模血浆蛋白质组学、遗传驱动的因果推理和实验验证,以确定DKD的优先靶点。在2844例糖尿病患者(528例患有DKD)中,我们确定了37个与DKD事件显著相关的靶点,这得到了观察性和因果性证据的支持。其中,22%(8/37)的潜在靶点目前正在研究DKD或其他疾病。我们的前瞻性研究证实,三个优先目标-胰岛素样生长因子结合蛋白4 (IGFBP4),序列相似家族3成员C (FAM3C)和前列腺素D2合成酶(PTGDS)-的较高水平分别与发生DKD的可能性增加4.35倍,3.51倍和3.57倍相关。此外,群体水平的蛋白改变变体(paus)分析和体外实验交叉验证了FAM3C和IGFBP4是DKD的潜在新靶点候选物,通过经典的NLR家族pyrin结构域包含3 (NLRP3)-caspase-1-gasdermin D (GSDMD)凋亡轴。我们的研究结果表明,将组学数据挖掘与因果推理相结合,可能是优先考虑治疗靶点的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信