The SARS-CoV-2 spike protein interacts with HAX1 to modulate cellular stress responses through activation of the UPR.

IF 4.2
Tony Avril, Elodie Lafont
{"title":"The SARS-CoV-2 spike protein interacts with HAX1 to modulate cellular stress responses through activation of the UPR.","authors":"Tony Avril, Elodie Lafont","doi":"10.1111/febs.70259","DOIUrl":null,"url":null,"abstract":"<p><p>During cell infection, viruses maintain the lifespan of host cells by preserving key functions of cellular organelles such as the endoplasmic reticulum (ER) and mitochondria to guarantee protein secretion and energy production. The host secretory pathway is rapidly hijacked to produce viral proteins and reconstitute viral particles for further viral dissemination. However, secreted protein synthesis and proper folding are tightly regulated in the host ER to maintain homeostasis, otherwise this organelle is subjected to ER stress that triggers an adaptive response named the unfolded protein response (UPR). The UPR first aims at restoring ER function by producing enzymes to correct or eliminate misfolded proteins. If ER stress remains unresolved, the UPR triggers cell death. In the work published by Zhu et al. in this issue of The FEBS Journal, the authors explore a previously undescribed molecular hijacking function of SARS-CoV-2 to limit host cell death. Indeed, the viral spike protein directly interacts with the host HAX1 molecule to promote UPR activation, limiting the production of deleterious reactive oxygen species and mitochondrial dysfunction to maintain host cell survival.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During cell infection, viruses maintain the lifespan of host cells by preserving key functions of cellular organelles such as the endoplasmic reticulum (ER) and mitochondria to guarantee protein secretion and energy production. The host secretory pathway is rapidly hijacked to produce viral proteins and reconstitute viral particles for further viral dissemination. However, secreted protein synthesis and proper folding are tightly regulated in the host ER to maintain homeostasis, otherwise this organelle is subjected to ER stress that triggers an adaptive response named the unfolded protein response (UPR). The UPR first aims at restoring ER function by producing enzymes to correct or eliminate misfolded proteins. If ER stress remains unresolved, the UPR triggers cell death. In the work published by Zhu et al. in this issue of The FEBS Journal, the authors explore a previously undescribed molecular hijacking function of SARS-CoV-2 to limit host cell death. Indeed, the viral spike protein directly interacts with the host HAX1 molecule to promote UPR activation, limiting the production of deleterious reactive oxygen species and mitochondrial dysfunction to maintain host cell survival.

SARS-CoV-2刺突蛋白与HAX1相互作用,通过激活UPR调节细胞应激反应。
在细胞感染过程中,病毒通过保持细胞器(如内质网和线粒体)的关键功能来维持宿主细胞的寿命,以保证蛋白质的分泌和能量的产生。宿主分泌途径被迅速劫持以产生病毒蛋白并重组病毒颗粒以进一步传播病毒。然而,分泌蛋白的合成和适当折叠在宿主内质网中受到严格调节以维持体内平衡,否则该细胞器将受到内质网应激,从而引发一种称为未折叠蛋白反应(UPR)的适应性反应。UPR首先旨在通过产生酶来纠正或消除错误折叠的蛋白质来恢复内质网功能。如果内质网应激得不到解决,UPR就会触发细胞死亡。在朱等人发表在这期《FEBS杂志》上的研究中,作者探索了SARS-CoV-2先前未描述的分子劫持功能,以限制宿主细胞死亡。事实上,病毒刺突蛋白直接与宿主HAX1分子相互作用,促进UPR激活,限制有害活性氧的产生和线粒体功能障碍,以维持宿主细胞存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信