Fatima Zohra Kaissar, Khelifa Bouacem, Mohammed Lamine Benine, Sondes Mechri, Shubha Rani Sharma, Vishal Kumar Singh, Mahfoud Bakli, Seif El Islam Lebouachera, Giovanni Emiliani
{"title":"<i>Bacillus</i> Pectinases as Key Biocatalysts for a Circular Bioeconomy: From Green Extraction to Process Optimization and Industrial Scale-Up.","authors":"Fatima Zohra Kaissar, Khelifa Bouacem, Mohammed Lamine Benine, Sondes Mechri, Shubha Rani Sharma, Vishal Kumar Singh, Mahfoud Bakli, Seif El Islam Lebouachera, Giovanni Emiliani","doi":"10.3390/biotech14030074","DOIUrl":null,"url":null,"abstract":"<p><p>Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent advances across the entire <i>Bacillus</i>-pectinase value chain, from green pectin extraction and upstream substrate characterization, through process and statistical optimization of enzyme production, to industrial biocatalysis applications. We propose a practical roadmap for developing high-efficiency, low-environmental-footprint enzyme systems that support circular bioeconomy objectives. Critical evaluation of optimization strategies, including submerged versus solid-state fermentation, response surface methodology, artificial neural networks, and design of experiments, is supported by comparative data on strain performance, fermentation parameters, and industrial titers. Sector-specific case studies demonstrate the efficacy of <i>Bacillus</i> pectinases in fruit-juice clarification, textile bio-scouring, paper bio-bleaching, bio-based detergents, coffee and tea processing, oil extraction, animal feed enhancement, wastewater treatment, and plant-virus purification. Remaining challenges, including enzyme stability in complex matrices, techno-economic scale-up, and structure-guided protein engineering, are identified. Future directions are charted toward CRISPR-driven enzyme design and fully integrated circular-economy bioprocessing platforms.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14030074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent advances across the entire Bacillus-pectinase value chain, from green pectin extraction and upstream substrate characterization, through process and statistical optimization of enzyme production, to industrial biocatalysis applications. We propose a practical roadmap for developing high-efficiency, low-environmental-footprint enzyme systems that support circular bioeconomy objectives. Critical evaluation of optimization strategies, including submerged versus solid-state fermentation, response surface methodology, artificial neural networks, and design of experiments, is supported by comparative data on strain performance, fermentation parameters, and industrial titers. Sector-specific case studies demonstrate the efficacy of Bacillus pectinases in fruit-juice clarification, textile bio-scouring, paper bio-bleaching, bio-based detergents, coffee and tea processing, oil extraction, animal feed enhancement, wastewater treatment, and plant-virus purification. Remaining challenges, including enzyme stability in complex matrices, techno-economic scale-up, and structure-guided protein engineering, are identified. Future directions are charted toward CRISPR-driven enzyme design and fully integrated circular-economy bioprocessing platforms.