aplot: Simplifying the creation of complex graphs to visualize associations across diverse data types.

IF 25.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-05-22 eCollection Date: 2025-09-08 DOI:10.1016/j.xinn.2025.100958
Shuangbin Xu, Qianwen Wang, Shaodi Wen, Junrui Li, Nan He, Ming Li, Thomas Hackl, Rui Wang, Dongqiang Zeng, Shixiang Wang, Shensuo Li, Chun-Hui Gao, Lang Zhou, Shaoguo Tao, Zijing Xie, Lin Deng, Guangchuang Yu
{"title":"aplot: Simplifying the creation of complex graphs to visualize associations across diverse data types.","authors":"Shuangbin Xu, Qianwen Wang, Shaodi Wen, Junrui Li, Nan He, Ming Li, Thomas Hackl, Rui Wang, Dongqiang Zeng, Shixiang Wang, Shensuo Li, Chun-Hui Gao, Lang Zhou, Shaoguo Tao, Zijing Xie, Lin Deng, Guangchuang Yu","doi":"10.1016/j.xinn.2025.100958","DOIUrl":null,"url":null,"abstract":"<p><p>Effective data visualization is crucial for researchers, revealing patterns, trends, and insights that might otherwise remain hidden. Integrating related visualizations can reveal correlations and relationships that are not evident when analyzing datasets separately. Despite increasing demand, there is a shortage of general tools to seamlessly combine diverse datasets to create complex visual representations. The <i>aplot</i> package addresses this by allowing users to independently create subplots and assemble them into a cohesive composite figure. It automatically reorders datasets for coordinate consistency, removing the need for manual adjustment. This modular approach simplifies the creation of complex visualizations, allowing customization to meet specific needs. <i>Aplot</i>'s versatility is ideal for integrating multi-omics datasets and analytical results for biological insights. The package is freely available on CRAN at https://cran.r-project.org/package=aplot, offering researchers a powerful tool for enhanced data exploration and visualizing workflows.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 9","pages":"100958"},"PeriodicalIF":25.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100958","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective data visualization is crucial for researchers, revealing patterns, trends, and insights that might otherwise remain hidden. Integrating related visualizations can reveal correlations and relationships that are not evident when analyzing datasets separately. Despite increasing demand, there is a shortage of general tools to seamlessly combine diverse datasets to create complex visual representations. The aplot package addresses this by allowing users to independently create subplots and assemble them into a cohesive composite figure. It automatically reorders datasets for coordinate consistency, removing the need for manual adjustment. This modular approach simplifies the creation of complex visualizations, allowing customization to meet specific needs. Aplot's versatility is ideal for integrating multi-omics datasets and analytical results for biological insights. The package is freely available on CRAN at https://cran.r-project.org/package=aplot, offering researchers a powerful tool for enhanced data exploration and visualizing workflows.

aplot:简化复杂图形的创建,以可视化跨不同数据类型的关联。
有效的数据可视化对研究人员来说是至关重要的,它揭示了可能隐藏的模式、趋势和见解。集成相关的可视化可以揭示在单独分析数据集时不明显的相关性和关系。尽管需求不断增加,但仍然缺乏通用工具来无缝地组合不同的数据集以创建复杂的视觉表示。aplot包通过允许用户独立创建子图并将它们组装成一个内聚的复合图来解决这个问题。它自动重新排序数据集的坐标一致性,消除了手动调整的需要。这种模块化方法简化了复杂可视化的创建,允许定制以满足特定需求。Aplot的多功能性是集成多组学数据集和生物学见解分析结果的理想选择。该软件包可在CRAN (https://cran.r-project.org/package=aplot)上免费获得,为研究人员提供了增强数据探索和可视化工作流程的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信