An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role.
Marina Giannakara, Vassiliki Lila Koumandou, Louis Papageorgiou
{"title":"An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role.","authors":"Marina Giannakara, Vassiliki Lila Koumandou, Louis Papageorgiou","doi":"10.3390/jox15050138","DOIUrl":null,"url":null,"abstract":"<p><p>Glyphosate Oxidoreductase (Gox) is an enzyme known to degrade glyphosate, an intensively used wide-spectrum herbicide. Although it was first reported back in 1995, much remains unknown about its role in bacteria, its distribution across the bacterial kingdom, and its structure. This information would be valuable for better understanding the degradation pathway of glyphosate and for discovering new enzymes with the same potential. In the present study, a holistic evolutionary analysis has been performed towards identifying homologue proteins within the FAD-dependent/binding oxidoreductases family and extracting critical characteristics related to conserved protein domains and motifs that play a key role in this enzyme's function. A total of 2220 representative protein sequences from 843 species and 10 classes of bacteria were analyzed, from which 4 protein domains, 2 characteristic/functional regions, and 8 conserved motifs were identified based on multiple sequence alignment and the annotated information from biological databases. The major goal of this study is the presentation of a novel phylogenetic tree for the Gox-related proteins to identify the major protein clusters and correlate them based on their sequence, structural, and functional information towards identifying new possible pharmacological targets that are related to this specific enzyme function. Considering the lack of information about Gox, the aim of this paper is to fill in these knowledge gaps, which can help determine the biological role of Gox and consequently better understand its function.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15050138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glyphosate Oxidoreductase (Gox) is an enzyme known to degrade glyphosate, an intensively used wide-spectrum herbicide. Although it was first reported back in 1995, much remains unknown about its role in bacteria, its distribution across the bacterial kingdom, and its structure. This information would be valuable for better understanding the degradation pathway of glyphosate and for discovering new enzymes with the same potential. In the present study, a holistic evolutionary analysis has been performed towards identifying homologue proteins within the FAD-dependent/binding oxidoreductases family and extracting critical characteristics related to conserved protein domains and motifs that play a key role in this enzyme's function. A total of 2220 representative protein sequences from 843 species and 10 classes of bacteria were analyzed, from which 4 protein domains, 2 characteristic/functional regions, and 8 conserved motifs were identified based on multiple sequence alignment and the annotated information from biological databases. The major goal of this study is the presentation of a novel phylogenetic tree for the Gox-related proteins to identify the major protein clusters and correlate them based on their sequence, structural, and functional information towards identifying new possible pharmacological targets that are related to this specific enzyme function. Considering the lack of information about Gox, the aim of this paper is to fill in these knowledge gaps, which can help determine the biological role of Gox and consequently better understand its function.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.