Design of anomalous Nernst thermoelectric generators for giant power output.

IF 25.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-06-13 eCollection Date: 2025-09-08 DOI:10.1016/j.xinn.2025.100995
Mengzhao Chen, Sheng Qian, Ziheng Gao, Shuo Liu, Shen Han, Tiejun Zhu, Yan Sun, Chenguang Fu
{"title":"Design of anomalous Nernst thermoelectric generators for giant power output.","authors":"Mengzhao Chen, Sheng Qian, Ziheng Gao, Shuo Liu, Shen Han, Tiejun Zhu, Yan Sun, Chenguang Fu","doi":"10.1016/j.xinn.2025.100995","DOIUrl":null,"url":null,"abstract":"<p><p>Topological magnets have shown great potential for transverse thermoelectric (TE) conversion with structural advantages, utilizing the anomalous Nernst effect. To facilitate such applications, the development of exceptional topological magnet-based Nernst devices is a crucial step that requires both high-performance topological magnets and the design of low-resistance interfaces in the devices. Here, we report that the anomalous Nernst effect in topological magnets can be ubiquitously enhanced by synergistically tuning the entropy-density-weighted Berry curvature and the Fermi surface, as evidenced by a giant anomalous Nernst power factor of 47.8 μW m<sup>-1</sup> K<sup>-2</sup> at room temperature in electron-doped Co<sub>2</sub>MnGa. In addition, we achieved an ultralow interfacial resistivity in the Nernst device by designing reactive wetting interfacial layers, enabling an ultrahigh power output of 69.7 μW at a temperature difference of 16.1 K, the highest value yet reported to date. We have also experimentally corroborated the structural advantages of transverse TE technology by developing Nernst devices with different length-to-thickness ratios. Our work demonstrates a paradigm for designing exceptional topological magnet-based Nernst generators for transverse TE conversion.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 9","pages":"100995"},"PeriodicalIF":25.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100995","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Topological magnets have shown great potential for transverse thermoelectric (TE) conversion with structural advantages, utilizing the anomalous Nernst effect. To facilitate such applications, the development of exceptional topological magnet-based Nernst devices is a crucial step that requires both high-performance topological magnets and the design of low-resistance interfaces in the devices. Here, we report that the anomalous Nernst effect in topological magnets can be ubiquitously enhanced by synergistically tuning the entropy-density-weighted Berry curvature and the Fermi surface, as evidenced by a giant anomalous Nernst power factor of 47.8 μW m-1 K-2 at room temperature in electron-doped Co2MnGa. In addition, we achieved an ultralow interfacial resistivity in the Nernst device by designing reactive wetting interfacial layers, enabling an ultrahigh power output of 69.7 μW at a temperature difference of 16.1 K, the highest value yet reported to date. We have also experimentally corroborated the structural advantages of transverse TE technology by developing Nernst devices with different length-to-thickness ratios. Our work demonstrates a paradigm for designing exceptional topological magnet-based Nernst generators for transverse TE conversion.

巨功率输出异常能量热电发电机的设计。
拓扑磁体利用反常能效应,具有结构优势,在横向热电转换方面显示出巨大的潜力。为了促进此类应用,开发基于特殊拓扑磁铁的能司特器件是关键的一步,这需要高性能拓扑磁铁和器件中低电阻接口的设计。本文中,我们报道了拓扑磁体中的反常能思效应可以通过协同调节熵密度加权的Berry曲率和费米表面而得到普遍增强,在电子掺杂的Co2MnGa中,室温下的反常能思功率因数高达47.8 μW m-1 K-2。此外,我们通过设计反应性润湿界面层,在Nernst器件中实现了超低的界面电阻率,在16.1 K的温差下实现了69.7 μW的超高功率输出,这是迄今为止报道的最高值。我们还通过实验证实了横向TE技术的结构优势,开发了不同长厚比的能思特器件。我们的工作展示了一种设计用于横向TE转换的特殊拓扑磁基能量发生器的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信