Zhou Liu, Chengcheng Ma, Xuan Teng, Kexue Yu, Jiabin Li
{"title":"Emergence of Pediatric Sepsis Caused by a <i>Klebsiella pneumoniae</i> Strain Coharboring <i>bla</i><sub>NDM-1</sub>, <i>bla</i><sub>OXA-1</sub>, and <i>Mcr-9</i> in China.","authors":"Zhou Liu, Chengcheng Ma, Xuan Teng, Kexue Yu, Jiabin Li","doi":"10.1177/10766294251380517","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the discovery of a <i>Klebsiella pneumoniae</i> (KPN) strain carrying the <i>bla</i><sub>NDM-1</sub>, <i>bla</i><sub>OXA-1</sub>, and <i>mcr-9</i> genes in China for the first time. This strain was isolated from the blood of a 2-year-old pediatric patient with acute lymphoblastic leukemia and sepsis. The strain exhibited high resistance to various antibiotics, including β-lactams, carbapenems, and ceftazidime-avibactam. Through whole-genome sequencing and comparative genomic analysis, we found that these resistance genes coexisted on the transferable IncHI2/IncHI2A-type plasmid pK708696_1, which showed high similarity to plasmid pK710429_2 from strain KPN710429 previously identified in our hospital, indicating their potential for rapid spread through horizontal gene transfer. We also performed conjugation experiments to verify the transferability of the plasmid. The results show that the resistance of this strain to traditional antibiotics significantly limited clinical treatment options, thereby posing a serious threat, especially for pediatric leukemia patients with compromised immune systems. This study provides important scientific evidence and new therapeutic approaches for combating carbapenem-resistant <i>Klebsiella pneumoniae</i> infections and highlights the urgency of developing new antibiotics and alternative therapies.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10766294251380517","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports the discovery of a Klebsiella pneumoniae (KPN) strain carrying the blaNDM-1, blaOXA-1, and mcr-9 genes in China for the first time. This strain was isolated from the blood of a 2-year-old pediatric patient with acute lymphoblastic leukemia and sepsis. The strain exhibited high resistance to various antibiotics, including β-lactams, carbapenems, and ceftazidime-avibactam. Through whole-genome sequencing and comparative genomic analysis, we found that these resistance genes coexisted on the transferable IncHI2/IncHI2A-type plasmid pK708696_1, which showed high similarity to plasmid pK710429_2 from strain KPN710429 previously identified in our hospital, indicating their potential for rapid spread through horizontal gene transfer. We also performed conjugation experiments to verify the transferability of the plasmid. The results show that the resistance of this strain to traditional antibiotics significantly limited clinical treatment options, thereby posing a serious threat, especially for pediatric leukemia patients with compromised immune systems. This study provides important scientific evidence and new therapeutic approaches for combating carbapenem-resistant Klebsiella pneumoniae infections and highlights the urgency of developing new antibiotics and alternative therapies.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.