Malte Feja, Isabell Drath, Sandra Weiß, Alexander Ewe, Birthe Gericke, Tiago F Outeiro, Leonidas Stefanis, Achim Aigner, Franziska Richter
{"title":"Nose-to-brain siRNA delivery by PEI/PPI-based nanoparticles reduces α-synuclein expression in a Parkinson's disease mouse model.","authors":"Malte Feja, Isabell Drath, Sandra Weiß, Alexander Ewe, Birthe Gericke, Tiago F Outeiro, Leonidas Stefanis, Achim Aigner, Franziska Richter","doi":"10.1016/j.omtn.2025.102671","DOIUrl":null,"url":null,"abstract":"<p><p>Potential strategies to develop new treatments for Parkinson's disease (PD) aim at targeting disease-associated proteins like alpha-synuclein (aSyn), which accumulates in neurons of PD patients and contributes to neuronal degeneration. A promising new approach is the therapeutic use of small interfering RNAs (siRNAs) for aSyn knockdown, but is challenging due to siRNA instability, poor delivery, and inefficient uptake. Therefore, we developed a nanoparticle-based approach for intranasal delivery of siRNAs, circumventing the blood-brain barrier and enhancing the potential of siRNAs for clinical application. Tyrosine-modified polyethylenimines (PEIs), or polypropylenimine dendrimers (PPIs), were complexed with siRNA targeting the aSyn-encoding gene <i>SNCA</i> (siSNCA) and combined with liposomes. Nanoparticles efficiently transfected SH-SY5Y cells with low cytotoxicity and significantly reduced <i>SNCA</i> mRNA levels. In Thy1-aSyn mice, intranasally administered labeled nanoparticles distributed extensively across the brain, including the olfactory bulb, substantia nigra, and prefrontal cortex. After only 4 days of treatment, siSNCA-loaded nanoparticles significantly reduced aSyn protein and <i>SNCA</i> mRNA levels in the brain. Mice showed neither overt adverse behavioral effects nor increased reactive microglia. These findings highlight the potential of nanoparticle-mediated intranasal siRNA delivery as a promising, non-invasive approach to reduce aSyn levels in the brain, offering a novel therapeutic strategy for Parkinson's disease.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102671"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102671","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Potential strategies to develop new treatments for Parkinson's disease (PD) aim at targeting disease-associated proteins like alpha-synuclein (aSyn), which accumulates in neurons of PD patients and contributes to neuronal degeneration. A promising new approach is the therapeutic use of small interfering RNAs (siRNAs) for aSyn knockdown, but is challenging due to siRNA instability, poor delivery, and inefficient uptake. Therefore, we developed a nanoparticle-based approach for intranasal delivery of siRNAs, circumventing the blood-brain barrier and enhancing the potential of siRNAs for clinical application. Tyrosine-modified polyethylenimines (PEIs), or polypropylenimine dendrimers (PPIs), were complexed with siRNA targeting the aSyn-encoding gene SNCA (siSNCA) and combined with liposomes. Nanoparticles efficiently transfected SH-SY5Y cells with low cytotoxicity and significantly reduced SNCA mRNA levels. In Thy1-aSyn mice, intranasally administered labeled nanoparticles distributed extensively across the brain, including the olfactory bulb, substantia nigra, and prefrontal cortex. After only 4 days of treatment, siSNCA-loaded nanoparticles significantly reduced aSyn protein and SNCA mRNA levels in the brain. Mice showed neither overt adverse behavioral effects nor increased reactive microglia. These findings highlight the potential of nanoparticle-mediated intranasal siRNA delivery as a promising, non-invasive approach to reduce aSyn levels in the brain, offering a novel therapeutic strategy for Parkinson's disease.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.