Luca Legato, Matteo Bisio, Filippo Fasano, Corrado Benevolo Savelli, Carolina Secreto, Chiara Maria Dellacasa, Barbara Botto, Alessandro Busca, Marco Cerrano, Roberto Freilone, Mattia Novo
{"title":"Mechanisms of Resistance to CAR T-Cells and How to Overcome Them.","authors":"Luca Legato, Matteo Bisio, Filippo Fasano, Corrado Benevolo Savelli, Carolina Secreto, Chiara Maria Dellacasa, Barbara Botto, Alessandro Busca, Marco Cerrano, Roberto Freilone, Mattia Novo","doi":"10.3390/mps8050108","DOIUrl":null,"url":null,"abstract":"<p><p>In the last few decades, chimeric antigen receptor (CAR) T-cell therapy has led to a paradigm shift in the treatment of hematological malignancies, including various subtypes of B-cell non-Hodgkin's lymphoma, B-cell acute lymphoblastic leukemia, and multiple myeloma. However, most patients experience refractoriness to CAR T-cells or relapse after treatment. Many efforts are underway to understand the mechanisms behind CAR T-cell failure, which are mainly related to CAR T-cell dysfunction, tumor-intrinsic resistance, an immunosuppressive tumor microenvironment, manufacturing issues, or patient-related factors. Several strategies are being developed to overcome these resistance mechanisms, including the engineering of more functional allogeneic CAR T-cell products, the targeting of alternative tumor antigens, and combination therapies with other drugs such as checkpoint inhibitors or small molecules to enhance CAR T-cell efficacy. In this review, we will provide an updated overview of the mechanisms of CAR T-cell failure and the therapeutic advances currently under development to address them.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8050108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the last few decades, chimeric antigen receptor (CAR) T-cell therapy has led to a paradigm shift in the treatment of hematological malignancies, including various subtypes of B-cell non-Hodgkin's lymphoma, B-cell acute lymphoblastic leukemia, and multiple myeloma. However, most patients experience refractoriness to CAR T-cells or relapse after treatment. Many efforts are underway to understand the mechanisms behind CAR T-cell failure, which are mainly related to CAR T-cell dysfunction, tumor-intrinsic resistance, an immunosuppressive tumor microenvironment, manufacturing issues, or patient-related factors. Several strategies are being developed to overcome these resistance mechanisms, including the engineering of more functional allogeneic CAR T-cell products, the targeting of alternative tumor antigens, and combination therapies with other drugs such as checkpoint inhibitors or small molecules to enhance CAR T-cell efficacy. In this review, we will provide an updated overview of the mechanisms of CAR T-cell failure and the therapeutic advances currently under development to address them.