Recombinant Expression and Purification of the Cyanobacterial Chaperone HtpG from Synechococcus elongatus PCC 7942.

IF 2 Q3 BIOCHEMICAL RESEARCH METHODS
Liqun Jiang, Ibrahim D Boyenle, Nicolas Delaeter, Yanxin Liu
{"title":"Recombinant Expression and Purification of the Cyanobacterial Chaperone HtpG from <i>Synechococcus elongatus</i> PCC 7942.","authors":"Liqun Jiang, Ibrahim D Boyenle, Nicolas Delaeter, Yanxin Liu","doi":"10.3390/mps8050103","DOIUrl":null,"url":null,"abstract":"<p><p>The 90 kDa Heat Shock Protein (Hsp90) is an essential and highly conserved molecular chaperone that supports the folding and maturation of a diverse array of client proteins across prokaryotic and eukaryotic organisms. In bacteria, HtpG, the Hsp90 homolog, plays a central role in stress response and protein homeostasis, particularly under high-temperature and other stress conditions. Despite extensive studies on HtpG from <i>E. coli</i>, the biochemical properties and functional roles of cyanobacterial HtpG remain poorly characterized. Here, we focus on HtpG from the cyanobacterium <i>Synechococcus elongatus</i> PCC 7942 (seHtpG), a model organism for photosynthesis and circadian rhythm research. We developed a method for the overexpression and purification of seHtpG in <i>E. coli</i>, achieving high purity and yield suitable for biochemical and structural studies. Biophysical and biochemical assays show that seHtpG forms dimers and hydrolyzes ATP at a rate of 1.9 ATP/min, 4-fold faster than that of <i>E. coli</i> HtpG. This work establishes seHtpG as a model for studying the roles of HtpG in cyanobacterial protein homeostasis, photosynthesis, and stress response, enabling further exploration of cyanobacterial Hsp90 in ecosystem dynamics and biotechnological applications.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8050103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The 90 kDa Heat Shock Protein (Hsp90) is an essential and highly conserved molecular chaperone that supports the folding and maturation of a diverse array of client proteins across prokaryotic and eukaryotic organisms. In bacteria, HtpG, the Hsp90 homolog, plays a central role in stress response and protein homeostasis, particularly under high-temperature and other stress conditions. Despite extensive studies on HtpG from E. coli, the biochemical properties and functional roles of cyanobacterial HtpG remain poorly characterized. Here, we focus on HtpG from the cyanobacterium Synechococcus elongatus PCC 7942 (seHtpG), a model organism for photosynthesis and circadian rhythm research. We developed a method for the overexpression and purification of seHtpG in E. coli, achieving high purity and yield suitable for biochemical and structural studies. Biophysical and biochemical assays show that seHtpG forms dimers and hydrolyzes ATP at a rate of 1.9 ATP/min, 4-fold faster than that of E. coli HtpG. This work establishes seHtpG as a model for studying the roles of HtpG in cyanobacterial protein homeostasis, photosynthesis, and stress response, enabling further exploration of cyanobacterial Hsp90 in ecosystem dynamics and biotechnological applications.

长聚球菌PCC 7942蓝藻伴侣蛋白HtpG的重组表达与纯化
90kda热休克蛋白(Hsp90)是一种重要的、高度保守的分子伴侣蛋白,支持原核和真核生物中多种客户蛋白的折叠和成熟。在细菌中,Hsp90同源物HtpG在应激反应和蛋白质稳态中起着核心作用,特别是在高温和其他应激条件下。尽管对来自大肠杆菌的HtpG进行了广泛的研究,但蓝藻HtpG的生化特性和功能作用仍然知之甚少。本文重点研究了长聚球菌(Synechococcus elongatus) PCC 7942 (seHtpG)中的HtpG,这是一种光合作用和昼夜节律研究的模式生物。我们开发了一种在大肠杆菌中过表达和纯化seHtpG的方法,获得了适合生化和结构研究的高纯度和产量。生物物理和生化实验表明,seHtpG形成二聚体,水解ATP的速度为1.9 ATP/min,比大肠杆菌HtpG快4倍。本研究为研究HtpG在蓝藻蛋白稳态、光合作用和胁迫响应中的作用建立了一个模型,为进一步探索蓝藻Hsp90在生态系统动力学和生物技术中的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信