YOLO-MPID: an improved YOLOv5 network for in situ detection of laser cladding melt pool states.

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Shirui Guo, Enbo Wang, Quanbin Du, Shuisheng Chen, Chuan Guo, Lujun Cui, Yinghao Cui, Xiaolei Li, Yongqian Chen, Yue Zhao, Bo Zheng
{"title":"YOLO-MPID: an improved YOLOv5 network for <i>in situ</i> detection of laser cladding melt pool states.","authors":"Shirui Guo, Enbo Wang, Quanbin Du, Shuisheng Chen, Chuan Guo, Lujun Cui, Yinghao Cui, Xiaolei Li, Yongqian Chen, Yue Zhao, Bo Zheng","doi":"10.1364/JOSAA.568259","DOIUrl":null,"url":null,"abstract":"<p><p>High-speed laser cladding is a critical surface modification technique, where the melt pool state critically determines the quality of the cladding layer. To address the challenges of inaccurate monitoring and the lack of real-time feedback control during the cladding process, this study proposes an improved YOLOv5-based object detection model, named YOLO-MPID. The model incorporates the Squeeze-and-Excitation (SE) module and the Convolutional Block Attention Module (CBAM) to enhance the extraction of complex edge structures and semantic features in melt pool images. Ablation studies were conducted to evaluate the individual and combined effects of SE and CBAM on detection performance. Comparative experiments under varying laser power conditions demonstrated that YOLO-MPID achieves superior robustness and accuracy compared to the baseline YOLOv5 and other mainstream detection algorithms. Experimental results show that the proposed model achieves a mean Average Precision (mAP at 0.5) of 97.42% and a real-time inference speed of 121.71 FPS. Visual analysis further supports the quantitative findings. In summary, YOLO-MPID provides an effective solution for real-time melt pool state detection and quality control in practical industrial scenarios, offering robust technical support for advancements in image science and optical process control.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 9","pages":"1322-1331"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.568259","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-speed laser cladding is a critical surface modification technique, where the melt pool state critically determines the quality of the cladding layer. To address the challenges of inaccurate monitoring and the lack of real-time feedback control during the cladding process, this study proposes an improved YOLOv5-based object detection model, named YOLO-MPID. The model incorporates the Squeeze-and-Excitation (SE) module and the Convolutional Block Attention Module (CBAM) to enhance the extraction of complex edge structures and semantic features in melt pool images. Ablation studies were conducted to evaluate the individual and combined effects of SE and CBAM on detection performance. Comparative experiments under varying laser power conditions demonstrated that YOLO-MPID achieves superior robustness and accuracy compared to the baseline YOLOv5 and other mainstream detection algorithms. Experimental results show that the proposed model achieves a mean Average Precision (mAP at 0.5) of 97.42% and a real-time inference speed of 121.71 FPS. Visual analysis further supports the quantitative findings. In summary, YOLO-MPID provides an effective solution for real-time melt pool state detection and quality control in practical industrial scenarios, offering robust technical support for advancements in image science and optical process control.

YOLO-MPID:一种改进的YOLOv5网络,用于激光熔覆熔池状态的原位检测。
高速激光熔覆是一种关键的表面改性技术,熔池状态对熔覆层的质量起着至关重要的作用。为了解决熔覆过程中监测不准确和缺乏实时反馈控制的挑战,本研究提出了一种改进的基于yolov5的目标检测模型,命名为YOLO-MPID。该模型结合了挤压激励(SE)模块和卷积块注意模块(CBAM),增强了对熔池图像复杂边缘结构和语义特征的提取。进行消融研究,以评估SE和CBAM对检测性能的单独和联合影响。不同激光功率条件下的对比实验表明,与基准YOLOv5和其他主流检测算法相比,YOLO-MPID具有更好的鲁棒性和精度。实验结果表明,该模型的平均精度(mAP为0.5)为97.42%,实时推理速度为121.71 FPS。视觉分析进一步支持定量研究结果。综上所述,YOLO-MPID为实际工业场景中的实时熔池状态检测和质量控制提供了有效的解决方案,为图像科学和光学过程控制的进步提供了强大的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信