A Comparative Study Between Clinical Optical Coherence Tomography (OCT) Analysis and Artificial Intelligence-Based Quantitative Evaluation in the Diagnosis of Diabetic Macular Edema.

IF 1.8 Q2 Medicine
Camila Brandão Fantozzi, Letícia Margaria Peres, Jogi Suda Neto, Cinara Cássia Brandão, Rodrigo Capobianco Guido, Rubens Camargo Siqueira
{"title":"A Comparative Study Between Clinical Optical Coherence Tomography (OCT) Analysis and Artificial Intelligence-Based Quantitative Evaluation in the Diagnosis of Diabetic Macular Edema.","authors":"Camila Brandão Fantozzi, Letícia Margaria Peres, Jogi Suda Neto, Cinara Cássia Brandão, Rodrigo Capobianco Guido, Rubens Camargo Siqueira","doi":"10.3390/vision9030075","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in artificial intelligence (AI) have transformed ophthalmic diagnostics, particularly for retinal diseases. In this prospective, non-randomized study, we evaluated the performance of an AI-based software system against conventional clinical assessment-both quantitative and qualitative-of optical coherence tomography (OCT) images for diagnosing diabetic macular edema (DME). A total of 700 OCT exams were analyzed across 26 features, including demographic data (age, sex), eye laterality, visual acuity, and 21 quantitative OCT parameters (Macula Map A X-Y). We tested two classification scenarios: binary (DME presence vs. absence) and multiclass (six distinct DME phenotypes). To streamline feature selection, we applied paraconsistent feature engineering (PFE), isolating the most diagnostically relevant variables. We then compared the diagnostic accuracies of logistic regression, support vector machines (SVM), K-nearest neighbors (KNN), and decision tree models. In the binary classification using all features, SVM and KNN achieved 92% accuracy, while logistic regression reached 91%. When restricted to the four PFE-selected features, accuracy modestly declined to 84% for both logistic regression and SVM. These findings underscore the potential of AI-and particularly PFE-as an efficient, accurate aid for DME screening and diagnosis.</p>","PeriodicalId":36586,"journal":{"name":"Vision (Switzerland)","volume":"9 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vision9030075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in artificial intelligence (AI) have transformed ophthalmic diagnostics, particularly for retinal diseases. In this prospective, non-randomized study, we evaluated the performance of an AI-based software system against conventional clinical assessment-both quantitative and qualitative-of optical coherence tomography (OCT) images for diagnosing diabetic macular edema (DME). A total of 700 OCT exams were analyzed across 26 features, including demographic data (age, sex), eye laterality, visual acuity, and 21 quantitative OCT parameters (Macula Map A X-Y). We tested two classification scenarios: binary (DME presence vs. absence) and multiclass (six distinct DME phenotypes). To streamline feature selection, we applied paraconsistent feature engineering (PFE), isolating the most diagnostically relevant variables. We then compared the diagnostic accuracies of logistic regression, support vector machines (SVM), K-nearest neighbors (KNN), and decision tree models. In the binary classification using all features, SVM and KNN achieved 92% accuracy, while logistic regression reached 91%. When restricted to the four PFE-selected features, accuracy modestly declined to 84% for both logistic regression and SVM. These findings underscore the potential of AI-and particularly PFE-as an efficient, accurate aid for DME screening and diagnosis.

Abstract Image

Abstract Image

Abstract Image

临床光学相干断层扫描(OCT)分析与基于人工智能的定量评估在糖尿病黄斑水肿诊断中的比较研究。
人工智能(AI)的最新进展已经改变了眼科诊断,特别是视网膜疾病的诊断。在这项前瞻性、非随机研究中,我们评估了基于人工智能的软件系统在诊断糖尿病黄斑水肿(DME)方面的性能,对比了光学相干断层扫描(OCT)图像的常规临床评估(定量和定性)。总共700份OCT检查分析了26个特征,包括人口统计数据(年龄、性别)、眼侧度、视力和21个定量OCT参数(黄斑图A X-Y)。我们测试了两种分类方案:二元(二甲醚存在与不存在)和多类(六种不同的二甲醚表型)。为了简化特征选择,我们应用了副一致特征工程(PFE),分离出与诊断最相关的变量。然后,我们比较了逻辑回归、支持向量机(SVM)、k近邻(KNN)和决策树模型的诊断准确性。在使用所有特征的二值分类中,SVM和KNN的准确率达到92%,而逻辑回归的准确率达到91%。当局限于四个pfe选择的特征时,逻辑回归和支持向量机的准确率都适度下降到84%。这些发现强调了人工智能——尤其是pfe——作为二甲醚筛查和诊断有效、准确的辅助手段的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vision (Switzerland)
Vision (Switzerland) Health Professions-Optometry
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信