A Comparative Bioinformatic Analysis of Optic Nerve Axon Regeneration Lipidomes Using the Xenopus laevis as a Model System.

IF 2 Q3 BIOCHEMICAL RESEARCH METHODS
Vernon S Volante, Fiona L Watson, Sanjoy K Bhattacharya
{"title":"A Comparative Bioinformatic Analysis of Optic Nerve Axon Regeneration Lipidomes Using the <i>Xenopus laevis</i> as a Model System.","authors":"Vernon S Volante, Fiona L Watson, Sanjoy K Bhattacharya","doi":"10.3390/mps8050110","DOIUrl":null,"url":null,"abstract":"<p><p>Lipidomics is a rapidly growing branch of metabolomics that identifies lipid compositions of samples to learn more about disease and identify potential novel therapeutic targets. In the context of ophthalmology, lipidomic research has increased our understanding of optic nerve regeneration. The diversity of experimental designs for lipidomic research and the large datasets generated are two obstacles that must be addressed by bioinformatic tools to perform statistical analysis on lipidomics data. Our study provides an objective comparison of the features in two freely accessible web-based bioinformatics tools, MetaboAnalyst 6.0 and LipidOne 2.3, for analyzing an optic nerve regeneration model lipidome. A publicly available lipidomic dataset of the optic nerve axon regeneration model, <i>Xenopus laevis</i>, was used to compare the analytic capabilities of both tools. Though both tools offered univariate and multivariate analysis methods, MetaboAnalyst 6.0 had advantages in customizable data processing, normalization, analysis, and image generation. It also offered consistent multiple-comparison testing correction and comprehensive results/dataset export. Meanwhile LipidOne 2.3 uniquely allowed for univariate and multivariate analysis of lipid classes and lipid building blocks.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8050110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Lipidomics is a rapidly growing branch of metabolomics that identifies lipid compositions of samples to learn more about disease and identify potential novel therapeutic targets. In the context of ophthalmology, lipidomic research has increased our understanding of optic nerve regeneration. The diversity of experimental designs for lipidomic research and the large datasets generated are two obstacles that must be addressed by bioinformatic tools to perform statistical analysis on lipidomics data. Our study provides an objective comparison of the features in two freely accessible web-based bioinformatics tools, MetaboAnalyst 6.0 and LipidOne 2.3, for analyzing an optic nerve regeneration model lipidome. A publicly available lipidomic dataset of the optic nerve axon regeneration model, Xenopus laevis, was used to compare the analytic capabilities of both tools. Though both tools offered univariate and multivariate analysis methods, MetaboAnalyst 6.0 had advantages in customizable data processing, normalization, analysis, and image generation. It also offered consistent multiple-comparison testing correction and comprehensive results/dataset export. Meanwhile LipidOne 2.3 uniquely allowed for univariate and multivariate analysis of lipid classes and lipid building blocks.

以非洲爪蟾为模型系统的视神经轴突再生脂质体比较生物信息学分析。
脂质组学是代谢组学的一个快速发展的分支,通过鉴定样品的脂质组成来了解更多关于疾病和确定潜在的新治疗靶点。在眼科的背景下,脂质组学研究增加了我们对视神经再生的认识。脂质组学研究实验设计的多样性和产生的大数据集是生物信息学工具对脂质组学数据进行统计分析必须解决的两个障碍。我们的研究提供了两个自由访问的基于网络的生物信息学工具,MetaboAnalyst 6.0和LipidOne 2.3,用于分析视神经再生模型脂质组的特征的客观比较。一个公开可用的视神经轴突再生模型——非洲爪蟾(Xenopus laevis)的脂质组学数据集被用来比较两种工具的分析能力。虽然这两个工具都提供单变量和多变量分析方法,但MetaboAnalyst 6.0在可定制的数据处理、规范化、分析和图像生成方面具有优势。它还提供了一致的多重比较测试校正和综合结果/数据集导出。同时,LipidOne 2.3独特地允许对脂类和脂质构建块进行单变量和多变量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信