Experimental method to assess depth sensing limits of inelastic scattering measurements using spatial-offset Raman spectroscopy imaging.

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-12-01 Epub Date: 2025-09-18 DOI:10.1117/1.JBO.30.S3.S34108
Hugo Tavera, Guillaume Sheehy, Patrick Orsini, Jacques Bismuth, Marie-Maude de Denus-Baillargeon, Maroun Massabki, Jean-François Masson, Frederic Leblond
{"title":"Experimental method to assess depth sensing limits of inelastic scattering measurements using spatial-offset Raman spectroscopy imaging.","authors":"Hugo Tavera, Guillaume Sheehy, Patrick Orsini, Jacques Bismuth, Marie-Maude de Denus-Baillargeon, Maroun Massabki, Jean-François Masson, Frederic Leblond","doi":"10.1117/1.JBO.30.S3.S34108","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The relationship between spatial offset and tissue sensing depth is not well understood in spatial offset Raman spectroscopy (SORS). Detection of the subsurface biochemical composition could improve clinical translation of SORS-based methods, including for lumpectomy margin characterization in breast cancer surgery.</p><p><strong>Aim: </strong>We aimed at developing an experimental method to establish a relationship between spatial offset in SORS and sampling depth. The technique was developed using a custom hyperspectral line-scanning imaging system optimized for Raman spectroscopy detection.</p><p><strong>Approach: </strong>Bilayer phantoms were produced with top and bottom layers made of material with different Raman spectroscopy signatures, i.e., poly(dimethylsiloxane) polymer (PDMS) and Nylon. The top layer of PDMS had different values of absorption and reduced elastic scattering coefficients, as well as a thickness up to <math><mrow><mo>∼</mo> <mn>3</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . A metric was used, called spectral angle mapper, that allowed for comparing SORS measurements with reference spectra of pure PDMS and Nylon. That metric was used to develop a technique predicting sensing depth for different values of spatial offset. A proof-of-concept study was performed to assess the performance of the method in biological tissue, demonstrating detectability of protein-rich tissue across layers of Intralipid and porcine fat to simulate the optical properties of human adipose tissue.</p><p><strong>Results: </strong>A total of 60 optical phantoms with varying optical properties and top layer thicknesses were imaged and processed to estimate sampling depth as a function of spatial offset. The study demonstrated the detectability of the underlying Nylon layer across a PDMS layer up to 3 mm in thickness. Similarly, the detectability of protein-rich tissue was demonstrated across layers of Intralipid up to 3 mm thick and <math><mrow><mo><</mo> <mn>2</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> for porcine fat.</p><p><strong>Conclusions: </strong>We showed the feasibility of using bilayer solid optical phantoms to create correlation curves between the optimal spatial offset for a desired probed depth given the optical properties of the top layer. The technique could facilitate the clinical translation of SORS measurements for tumor detection and margins assessment.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 Suppl 3","pages":"S34108"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.S3.S34108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: The relationship between spatial offset and tissue sensing depth is not well understood in spatial offset Raman spectroscopy (SORS). Detection of the subsurface biochemical composition could improve clinical translation of SORS-based methods, including for lumpectomy margin characterization in breast cancer surgery.

Aim: We aimed at developing an experimental method to establish a relationship between spatial offset in SORS and sampling depth. The technique was developed using a custom hyperspectral line-scanning imaging system optimized for Raman spectroscopy detection.

Approach: Bilayer phantoms were produced with top and bottom layers made of material with different Raman spectroscopy signatures, i.e., poly(dimethylsiloxane) polymer (PDMS) and Nylon. The top layer of PDMS had different values of absorption and reduced elastic scattering coefficients, as well as a thickness up to 3    mm . A metric was used, called spectral angle mapper, that allowed for comparing SORS measurements with reference spectra of pure PDMS and Nylon. That metric was used to develop a technique predicting sensing depth for different values of spatial offset. A proof-of-concept study was performed to assess the performance of the method in biological tissue, demonstrating detectability of protein-rich tissue across layers of Intralipid and porcine fat to simulate the optical properties of human adipose tissue.

Results: A total of 60 optical phantoms with varying optical properties and top layer thicknesses were imaged and processed to estimate sampling depth as a function of spatial offset. The study demonstrated the detectability of the underlying Nylon layer across a PDMS layer up to 3 mm in thickness. Similarly, the detectability of protein-rich tissue was demonstrated across layers of Intralipid up to 3 mm thick and < 2    mm for porcine fat.

Conclusions: We showed the feasibility of using bilayer solid optical phantoms to create correlation curves between the optimal spatial offset for a desired probed depth given the optical properties of the top layer. The technique could facilitate the clinical translation of SORS measurements for tumor detection and margins assessment.

利用空间偏移拉曼光谱成像评估非弹性散射测量深度传感极限的实验方法。
意义:在空间偏移拉曼光谱(SORS)中,空间偏移与组织传感深度之间的关系尚不清楚。检测皮下生化成分可以改善基于sors的方法的临床翻译,包括乳腺癌手术中乳房肿瘤切除边缘的表征。目的:建立一种实验方法来建立传感器空间偏移与采样深度之间的关系。该技术是使用针对拉曼光谱检测优化的定制高谱线扫描成像系统开发的。方法:采用不同拉曼光谱特征的材料,即聚二甲基硅氧烷聚合物(PDMS)和尼龙,制作双层幻影。PDMS顶层具有不同的吸收值和减少的弹性散射系数,厚度可达~ 3mm。使用了一种称为光谱角映射器的度量,可以将传感器测量结果与纯PDMS和尼龙的参考光谱进行比较。该度量被用于开发一种预测不同空间偏移值的感知深度的技术。一项概念验证研究评估了该方法在生物组织中的性能,证明了跨脂肪内和猪脂肪层的富含蛋白质组织的可检测性,以模拟人类脂肪组织的光学特性。结果:共对60个具有不同光学性质和顶层厚度的光学幻影进行了成像和处理,以估计采样深度作为空间偏移的函数。该研究证明了在PDMS层下的尼龙层的可探测性,其厚度可达3毫米。同样,富含蛋白质的组织的可检测性被证明跨脂质内层厚达3mm,猪脂肪层厚达2mm。结论:我们证明了在给定顶层光学特性的情况下,使用双层固体光学幻影在理想探测深度的最佳空间偏移之间创建相关曲线的可行性。该技术可以促进肿瘤检测和边缘评估的临床翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信