Formulating and evaluating time series algorithms to forecast daily asthma hospital admissions.

IF 2 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Journal of Clinical and Translational Science Pub Date : 2025-07-30 eCollection Date: 2025-01-01 DOI:10.1017/cts.2025.10111
Stephen P Colegate, Michael Seid, David Hartley, Aaron Flicker, Joseph Bruce, Joseph Michael, Mfonobong Udoko, Andrew F Beck, Cole Brokamp
{"title":"Formulating and evaluating time series algorithms to forecast daily asthma hospital admissions.","authors":"Stephen P Colegate, Michael Seid, David Hartley, Aaron Flicker, Joseph Bruce, Joseph Michael, Mfonobong Udoko, Andrew F Beck, Cole Brokamp","doi":"10.1017/cts.2025.10111","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Asthma exacerbations are frequent causes of pediatric hospital admissions. We sought to develop a time series algorithm to forecast next-day daily asthma hospitalizations.</p><p><strong>Methods: </strong>Daily hospitalizations for asthma were collected at Cincinnati Children's from January 1, 2016, to December 31, 2023. We evaluated Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), Prophet, and Ensemble models to forecast next-day asthma hospitalizations validated on 2023 data, considering varying historical training data lengths. Forecasts were calibrated to identify days exceeding a 5% high-risk threshold of historical totals and considered multiple validation years and years before and during the COVID-19 pandemic.</p><p><strong>Results: </strong>A total of 5,593 hospital admissions were recorded for asthma. Over 2,922 days, 166 days met the 5% high-risk threshold equating to 6 or more admissions. The Ensemble (Median Absolute Percentage Error (MAPE): 46.7%; Positive Predictive Value (PPV): 0.278; Negative Predictive Value (NPV): 0.942; Area Under the ROC Curve (AUC): 0.740; Sensitivity: 0.800; Specificity: 0.656) model achieved higher accuracy of high-risk days than ARIMA (MAPE: 46.5%; PPV: 0.278; NPV: 0.942; AUC: 0.709; Sensitivity: 0.760; Specificity: 0.571), ETS (MAPE: 47.2%; PPV: 0.222; NPV: 0.939; AUC: 0.711; Sensitivity: 0.800; Specificity: 0.668), and Prophet (MAPE: 48.9%; PPV: 0.444; NPV: 0.951; AUC: 0.732; Sensitivity: 0.680; Specificity: 0.741) models.</p><p><strong>Conclusions: </strong>Our Ensemble model of mean predictions from ARIMA, ETS, and Prophet models was the most accurate in forecasting future asthma hospitalizations. Integrating forecasting techniques with clinical operations could enable proactive prevention through enhanced population care management.</p>","PeriodicalId":15529,"journal":{"name":"Journal of Clinical and Translational Science","volume":"9 1","pages":"e185"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cts.2025.10111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Asthma exacerbations are frequent causes of pediatric hospital admissions. We sought to develop a time series algorithm to forecast next-day daily asthma hospitalizations.

Methods: Daily hospitalizations for asthma were collected at Cincinnati Children's from January 1, 2016, to December 31, 2023. We evaluated Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), Prophet, and Ensemble models to forecast next-day asthma hospitalizations validated on 2023 data, considering varying historical training data lengths. Forecasts were calibrated to identify days exceeding a 5% high-risk threshold of historical totals and considered multiple validation years and years before and during the COVID-19 pandemic.

Results: A total of 5,593 hospital admissions were recorded for asthma. Over 2,922 days, 166 days met the 5% high-risk threshold equating to 6 or more admissions. The Ensemble (Median Absolute Percentage Error (MAPE): 46.7%; Positive Predictive Value (PPV): 0.278; Negative Predictive Value (NPV): 0.942; Area Under the ROC Curve (AUC): 0.740; Sensitivity: 0.800; Specificity: 0.656) model achieved higher accuracy of high-risk days than ARIMA (MAPE: 46.5%; PPV: 0.278; NPV: 0.942; AUC: 0.709; Sensitivity: 0.760; Specificity: 0.571), ETS (MAPE: 47.2%; PPV: 0.222; NPV: 0.939; AUC: 0.711; Sensitivity: 0.800; Specificity: 0.668), and Prophet (MAPE: 48.9%; PPV: 0.444; NPV: 0.951; AUC: 0.732; Sensitivity: 0.680; Specificity: 0.741) models.

Conclusions: Our Ensemble model of mean predictions from ARIMA, ETS, and Prophet models was the most accurate in forecasting future asthma hospitalizations. Integrating forecasting techniques with clinical operations could enable proactive prevention through enhanced population care management.

Abstract Image

Abstract Image

Abstract Image

制定和评估时间序列算法预测每日哮喘住院人数。
简介:哮喘加重是儿科住院的常见原因。我们试图开发一种时间序列算法来预测第二天的每日哮喘住院。方法:收集2016年1月1日至2023年12月31日在辛辛那提儿童医院(Cincinnati Children’s)每日因哮喘住院的病例。考虑到不同的历史训练数据长度,我们评估了自回归综合移动平均(ARIMA)、指数平滑(ETS)、先知(Prophet)和集成(Ensemble)模型对2023年数据验证的第二天哮喘住院率的预测。对预测进行了校准,以确定超过历史总数5%的高风险阈值的天数,并考虑在2019冠状病毒病大流行之前和期间的多年和多年进行多次验证。结果:共有5593例哮喘住院记录。在2922天中,166天达到了5%的高风险阈值,相当于6次或更多的入院。中位数绝对百分比误差(MAPE): 46.7%;阳性预测值(PPV): 0.278;阴性预测值(NPV): 0.942;ROC曲线下面积(AUC): 0.740;灵敏度:0.800;特异性:0.656)模型比ARIMA (MAPE: 46.5%; PPV: 0.278; NPV: 0.942; AUC: 0.709;敏感性:0.760;特异性:0.571)、ETS (MAPE: 47.2%; PPV: 0.222; NPV: 0.939; AUC: 0.711;敏感性:0.800;特异性:0.668)和Prophet (MAPE: 48.9%; PPV: 0.444; NPV: 0.951; AUC: 0.732;敏感性:0.680;特异性:0.741)模型具有更高的准确率。结论:我们的综合ARIMA、ETS和Prophet模型的平均预测在预测未来哮喘住院率方面是最准确的。将预测技术与临床操作相结合,可以通过加强人口护理管理实现主动预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical and Translational Science
Journal of Clinical and Translational Science MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
2.80
自引率
26.90%
发文量
437
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信