{"title":"Advances in novel drug delivery systems: a focus on nanoparticles and mucoadhesive technologies.","authors":"Ravi Sangavi, Sulekha Khute, Paranthaman Subash","doi":"10.1080/03639045.2025.2564364","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the advancements and therapeutic potential of nanocarrier-based drug delivery systems in improving drug administration, targeting efficiency, and patient outcomes, particularly in complex disease management.</p><p><strong>Significance: </strong>Traditional drug delivery methods often suffer from limited targeting ability, poor bioavailability, and increased side effects. Nanocarriers, such as liposomes, dendrimers, polymeric nanoparticles, and solid lipid nanoparticles, offer innovative solutions by enabling site-specific delivery, controlled release, and enhanced therapeutic indices, thereby transforming pharmaceutical care.</p><p><strong>Methods: </strong>This review examines the current literature and recent innovations in nanocarrier design and application. It highlights stimulus-responsive systems (e.g. pH- or temperature-sensitive nanocarriers) and assesses their roles in treating conditions such as cancer, rheumatoid arthritis, and neurological disorders. This study also analyzes technological trends and translational challenges in clinical applications, including regulatory and safety concerns.</p><p><strong>Results: </strong>Recent developments in nanotechnology have enabled the creation of multifunctional, targeted, and stimuli-responsive nanocarriers capable of delivering therapeutic agents with improved precision and efficacy. These systems significantly enhance drug absorption and retention at the target site, provide sustained release, and minimize systemic side effects of the drug. Preclinical and early clinical data support their effectiveness in overcoming the limitations of conventional therapies.</p><p><strong>Conclusions: </strong>Nanocarrier-based drug delivery systems represent a paradigm shift in therapeutic strategies, offering precision-targeted treatment with improved efficacy and safety. Despite regulatory and translational challenges, continued research and innovation are accelerating their path to clinical adoption, establishing nanocarriers as the cornerstone of personalized medicine in cancer therapy.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-16"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2564364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the advancements and therapeutic potential of nanocarrier-based drug delivery systems in improving drug administration, targeting efficiency, and patient outcomes, particularly in complex disease management.
Significance: Traditional drug delivery methods often suffer from limited targeting ability, poor bioavailability, and increased side effects. Nanocarriers, such as liposomes, dendrimers, polymeric nanoparticles, and solid lipid nanoparticles, offer innovative solutions by enabling site-specific delivery, controlled release, and enhanced therapeutic indices, thereby transforming pharmaceutical care.
Methods: This review examines the current literature and recent innovations in nanocarrier design and application. It highlights stimulus-responsive systems (e.g. pH- or temperature-sensitive nanocarriers) and assesses their roles in treating conditions such as cancer, rheumatoid arthritis, and neurological disorders. This study also analyzes technological trends and translational challenges in clinical applications, including regulatory and safety concerns.
Results: Recent developments in nanotechnology have enabled the creation of multifunctional, targeted, and stimuli-responsive nanocarriers capable of delivering therapeutic agents with improved precision and efficacy. These systems significantly enhance drug absorption and retention at the target site, provide sustained release, and minimize systemic side effects of the drug. Preclinical and early clinical data support their effectiveness in overcoming the limitations of conventional therapies.
Conclusions: Nanocarrier-based drug delivery systems represent a paradigm shift in therapeutic strategies, offering precision-targeted treatment with improved efficacy and safety. Despite regulatory and translational challenges, continued research and innovation are accelerating their path to clinical adoption, establishing nanocarriers as the cornerstone of personalized medicine in cancer therapy.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.