Behavioral outcome prediction among children using machine learning.

IF 1.9
Bioinformation Pub Date : 2025-06-30 eCollection Date: 2025-01-01 DOI:10.6026/973206300211555
Samir P V, Aruna Kumari G, Nandini Biradar, Kodali Srija, Debasmita Das, Sukabhogi Anusha
{"title":"Behavioral outcome prediction among children using machine learning.","authors":"Samir P V, Aruna Kumari G, Nandini Biradar, Kodali Srija, Debasmita Das, Sukabhogi Anusha","doi":"10.6026/973206300211555","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioural management in paediatric dentistry is essential for treatment success, yet predicting a child's behavior remains a challenge. This study used machine learning models on data from 120 children aged 4-10 years, incorporating clinical and historical variables such as age, dental history and parental anxiety. Among the models tested, Random Forest achieved the highest accuracy (87.5%) in predicting behavior based on the Frankl scale. Key predictors of negative behavior included younger age, high parental anxiety and prior negative dental experiences. These findings highlight the potential of machine learning to support behavior guidance planning and improve clinical outcomes.</p>","PeriodicalId":8962,"journal":{"name":"Bioinformation","volume":"21 6","pages":"1555-1558"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6026/973206300211555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioural management in paediatric dentistry is essential for treatment success, yet predicting a child's behavior remains a challenge. This study used machine learning models on data from 120 children aged 4-10 years, incorporating clinical and historical variables such as age, dental history and parental anxiety. Among the models tested, Random Forest achieved the highest accuracy (87.5%) in predicting behavior based on the Frankl scale. Key predictors of negative behavior included younger age, high parental anxiety and prior negative dental experiences. These findings highlight the potential of machine learning to support behavior guidance planning and improve clinical outcomes.

使用机器学习预测儿童行为结果。
儿童牙科的行为管理对治疗成功至关重要,但预测儿童的行为仍然是一个挑战。这项研究对120名4-10岁儿童的数据使用了机器学习模型,并结合了年龄、牙病史和父母焦虑等临床和历史变量。在测试的模型中,Random Forest在基于Frankl量表的预测行为方面达到了最高的准确率(87.5%)。消极行为的主要预测因素包括年龄较小,父母高度焦虑和先前的负面牙科经历。这些发现强调了机器学习在支持行为指导计划和改善临床结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformation
Bioinformation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
128
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信