Isabella Tavernaro, Fabian Simon, Lennart Gehrenkemper, Charlie Tobias, Ute Resch-Genger, Björn Meermann
{"title":"Quantification of the amount of surface groups of aminated silica nano- and microparticles utilizing a fluorine tag and HR-CS-GFMAS.","authors":"Isabella Tavernaro, Fabian Simon, Lennart Gehrenkemper, Charlie Tobias, Ute Resch-Genger, Björn Meermann","doi":"10.1007/s00216-025-06107-4","DOIUrl":null,"url":null,"abstract":"<p><p>The performance, bioavailability, and safe use of engineered nanomaterials (NMs) depends not only on properties such as size, shape, and surface area, but largely on surface chemistry. While many sizing methods have been established, there is still a lack of validated screening methods for determining NM surface functional groups (FGs). In this context, we present a fast and simple method for FG quantification using high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) and assess its applicability for the surface analysis of representatively chosen aminated silica nanoparticles (NPs) and microparticles (MPs) in conjunction with amino FG labeling with a fluorine tag. For this proof-of-concept study, first surface amino FG screening of the silica NPs and MPs was done with a potentiometric back titration method, providing the total amount of protonatable surface FGs, and two optical assays relying on reporter dyes with sizes and spatial requirements, i.e., surface binding areas smaller or larger than that of the fluorine tag to estimate the maximum and reporter-accessible number of amino FGs. Subsequently, the surface amino FGs were labeled with the fluorine tag 4-(trifluoromethyl)benzoic acid (TFMB) and the amount of fluorine originating from the bound TFMB molecules was quantified by HR-CS-GFMAS in two common organic solvents, i.e., dimethyl sulfoxide (DMSO) or ethanol (EtOH) to assess possible interferences from organic matrices. Our study revealed limits of detection (LODs) and quantification (LOQs) for fluorine of 1.0 µg/L and 3.5 µg/L in EtOH and 1.5 µg/L and 5.0 µg/L in DMSO, respectively. Overall, a quick and simple method for analyzing surface FGs on NPs and MPs was presented utilizing broadly available fluorine tags and HR-CS-GFMAS for fluorine quantification, which can be applied, e.g., for homogeneity, stability, and aging studies of surface-modified particles. This could contribute to ease the understanding of property-safety relationships for surface-functionalized NMs.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-06107-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The performance, bioavailability, and safe use of engineered nanomaterials (NMs) depends not only on properties such as size, shape, and surface area, but largely on surface chemistry. While many sizing methods have been established, there is still a lack of validated screening methods for determining NM surface functional groups (FGs). In this context, we present a fast and simple method for FG quantification using high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) and assess its applicability for the surface analysis of representatively chosen aminated silica nanoparticles (NPs) and microparticles (MPs) in conjunction with amino FG labeling with a fluorine tag. For this proof-of-concept study, first surface amino FG screening of the silica NPs and MPs was done with a potentiometric back titration method, providing the total amount of protonatable surface FGs, and two optical assays relying on reporter dyes with sizes and spatial requirements, i.e., surface binding areas smaller or larger than that of the fluorine tag to estimate the maximum and reporter-accessible number of amino FGs. Subsequently, the surface amino FGs were labeled with the fluorine tag 4-(trifluoromethyl)benzoic acid (TFMB) and the amount of fluorine originating from the bound TFMB molecules was quantified by HR-CS-GFMAS in two common organic solvents, i.e., dimethyl sulfoxide (DMSO) or ethanol (EtOH) to assess possible interferences from organic matrices. Our study revealed limits of detection (LODs) and quantification (LOQs) for fluorine of 1.0 µg/L and 3.5 µg/L in EtOH and 1.5 µg/L and 5.0 µg/L in DMSO, respectively. Overall, a quick and simple method for analyzing surface FGs on NPs and MPs was presented utilizing broadly available fluorine tags and HR-CS-GFMAS for fluorine quantification, which can be applied, e.g., for homogeneity, stability, and aging studies of surface-modified particles. This could contribute to ease the understanding of property-safety relationships for surface-functionalized NMs.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.