{"title":"3D imaging and quantitative analysis of adipocytes in situ and ex situ.","authors":"Isabelle Hue, Adèle Branthonne, Manon Thomas, Violette Thermes, Jérôme Bugeon","doi":"10.1080/21623945.2025.2558573","DOIUrl":null,"url":null,"abstract":"<p><p>Different adipose tissues (AT) have been described, including subcutaneous and visceral tissues (SCAT and VAT). They display different morphological structures, physiological and metabolic functions. Imaging adipocytes in the whole AT was not feasible because of the large adipocyte sizes and the lipid-full content of the droplets that increased the refractive index. Tissue clearing is then required mainly through a delipidation step, which induces also a tissue shrinkage. Our aim was to image in 3D freshly extracted adipocytes and compare them to those within their tissues. Trout ATs were stained with 5DTAF (extracellular matrix) and Nile Red (lipids). After clearing with Histodenz, 3D images were obtained using a confocal microscope, and adipocytes were segmented and measured. In situ, major differences in adipocyte size and shape were observed between the VAT and SCAT. Ex situ, only the size mattered because all cells were round outside their tissues. This method can be applied to other species, such as mice. In situ, adipocyte sphericity was even higher in the SCAT from a Swiss and a C57Bl6. This approach demonstrates that 3D adipocyte imaging with lipid labeling enables accurate morphological characterization, provides insights into depot-specific structural features, and supports optimization of cell isolation protocols.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2558573"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2025.2558573","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Different adipose tissues (AT) have been described, including subcutaneous and visceral tissues (SCAT and VAT). They display different morphological structures, physiological and metabolic functions. Imaging adipocytes in the whole AT was not feasible because of the large adipocyte sizes and the lipid-full content of the droplets that increased the refractive index. Tissue clearing is then required mainly through a delipidation step, which induces also a tissue shrinkage. Our aim was to image in 3D freshly extracted adipocytes and compare them to those within their tissues. Trout ATs were stained with 5DTAF (extracellular matrix) and Nile Red (lipids). After clearing with Histodenz, 3D images were obtained using a confocal microscope, and adipocytes were segmented and measured. In situ, major differences in adipocyte size and shape were observed between the VAT and SCAT. Ex situ, only the size mattered because all cells were round outside their tissues. This method can be applied to other species, such as mice. In situ, adipocyte sphericity was even higher in the SCAT from a Swiss and a C57Bl6. This approach demonstrates that 3D adipocyte imaging with lipid labeling enables accurate morphological characterization, provides insights into depot-specific structural features, and supports optimization of cell isolation protocols.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.