Obtaining population-based estimates for survey data using Bayesian hierarchical models with Poststratification.

IF 4.8 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yunxuan Zhang, Thomas M Gill, Karen Bandeen-Roche, Robert D Becher, Kendra Davis-Plourde, Emma X Zang
{"title":"Obtaining population-based estimates for survey data using Bayesian hierarchical models with Poststratification.","authors":"Yunxuan Zhang, Thomas M Gill, Karen Bandeen-Roche, Robert D Becher, Kendra Davis-Plourde, Emma X Zang","doi":"10.1093/aje/kwaf209","DOIUrl":null,"url":null,"abstract":"<p><p>For large-scale surveys such as the National Health and Aging Trends Study (NHATS), investigators may wish to combine data from two (or more) cohorts in a single analysis to obtain larger sample sizes. Unfortunately, it is not possible to combine the 2011 and 2015 NHATS cohorts while retaining the sample weights. We applied Bayesian hierarchical models with poststratification as an alternative strategy for obtaining population-based estimates from NHATS. As proof of principle, we compared prevalence estimates of frailty obtained from our Bayesian approach with those obtained from the 2011 and 2015 cohorts using the NHATS sample weights. Once validated, we applied our strategy to combine the cohorts into a single analytical dataset without overlap of participants, and generated Bayesian estimates of frailty for the combined cohort. Estimates from the Bayesian model closely matched the weighted NHATS estimates. The ability to combine cohorts while generating population-based estimates will allow investigators to address questions that require larger sample sizes, thereby enhancing the value of NHATS to the scientific community.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwaf209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

For large-scale surveys such as the National Health and Aging Trends Study (NHATS), investigators may wish to combine data from two (or more) cohorts in a single analysis to obtain larger sample sizes. Unfortunately, it is not possible to combine the 2011 and 2015 NHATS cohorts while retaining the sample weights. We applied Bayesian hierarchical models with poststratification as an alternative strategy for obtaining population-based estimates from NHATS. As proof of principle, we compared prevalence estimates of frailty obtained from our Bayesian approach with those obtained from the 2011 and 2015 cohorts using the NHATS sample weights. Once validated, we applied our strategy to combine the cohorts into a single analytical dataset without overlap of participants, and generated Bayesian estimates of frailty for the combined cohort. Estimates from the Bayesian model closely matched the weighted NHATS estimates. The ability to combine cohorts while generating population-based estimates will allow investigators to address questions that require larger sample sizes, thereby enhancing the value of NHATS to the scientific community.

使用带后分层的贝叶斯层次模型获得基于人口的调查数据估计。
对于像国家健康和老龄化趋势研究(NHATS)这样的大规模调查,研究者可能希望在一次分析中结合来自两个(或更多)队列的数据,以获得更大的样本量。不幸的是,在保留样本权重的情况下,不可能合并2011年和2015年的NHATS队列。我们应用贝叶斯层次模型和后分层作为从NHATS中获得基于人口的估计的替代策略。作为原则证明,我们将贝叶斯方法获得的脆弱性患病率估计值与使用NHATS样本权重从2011年和2015年队列中获得的估计值进行了比较。一旦验证,我们应用我们的策略将这些队列合并成一个单一的分析数据集,没有重叠的参与者,并为合并队列生成贝叶斯脆弱性估计。贝叶斯模型的估计值与加权NHATS估计值非常吻合。在产生基于人口的估计的同时结合队列的能力将使研究人员能够解决需要更大样本量的问题,从而提高NHATS对科学界的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信