Shape-Morphing Robotics: From Fundamental Principles to Adaptive Machines

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Jiefeng Sun, Vishesh Vikas, Hamid Marvi, Ke Liu
{"title":"Shape-Morphing Robotics: From Fundamental Principles to Adaptive Machines","authors":"Jiefeng Sun,&nbsp;Vishesh Vikas,&nbsp;Hamid Marvi,&nbsp;Ke Liu","doi":"10.1002/aisy.202500878","DOIUrl":null,"url":null,"abstract":"<p>The remarkable capability of living organisms to reshape themselves—whether the compliant deformation of musculoskeletal structure, the origami-like folding of a butterfly's wing, or the stiffness modulation of a turtle flipper—continues to inspire breakthroughs in robotic design. Nature reveals that form and function are inherently coupled and adaptability is rooted in intelligent mechanical design, e.g., materials and structures. This special issue of <i>Advanced Intelligent Systems</i> assembles the latest progress in shape-morphing robotics and machines that alter their physical geometry to achieve adaptive properties in response to changing environments, task demands, or unexpected disturbances.</p><p>Shape-morphing robots lie at the intersection of materials science, mechanical design, and intelligent control. Several contributions translate biological strategies directly into engineered systems. <b>Khan</b> <i>et al.</i> (doi: 10.1002/aisy.202400620) fabricate 3D-printed magnetic butterflies whose vein-embedded composites replicate monarch wing folding, delivering agile, energy-efficient aerial maneuvers. <b>Ramirez</b> <i>et al.</i> (doi: 10.1002/aisy.202401055) present JART, an amphibious robot that uses kirigami-layer jamming to toggle between flippers and legs, cutting morphing energy by approximately 98% relative to thermally driven designs. <b>Jensen</b> <i>et al.</i> (doi: 10.1002/aisy.202500422) describe DAWN, a dual-helical, wave-propelled crawler whose elastomer skins boost friction and shield internal linkages, letting it traverse sand, gravel, and wet soil. <b>Huang</b> <i>et al.</i> (doi: 10.1002/aisy.202500365) mimic human digits in a wearable pneumatic physiotherapy device that integrates actuation, sensing, and control for on-body, customizable massage. These studies showcase how biomimicry delivers both functional versatility and structural elegance, yet also highlight enduring challenges—continuous materials integration, long-term durability, and tightly coupled actuation–sensing architectures.</p><p>A recurring theme in this issue is multi-modal morphologies: the robots will tailor not only shape, but also properties, such as stiffness, for high load-bearing capabilities. In terms of shapes, <b>Chen</b> <i>et al.</i> (doi: 10.1002/aisy.202500123) achieve this through tunable-stiffness architecture morphing structures (TSAMS) that exhibit over 300-fold tunable stiffness range using shape memory alloy actuators. <b>Samarakoon</b> <i>et al.</i> (doi: 10.1002/aisy.202400417) further our understanding of the tiling robots through design, kinematic modeling and control of polyform-inspired robots capable of transforming between two polymorphic shapes, and establishing a taxonomy for scalable morphing tiling robots. <b>Petrš</b> <i>et al.</i> (doi: 10.1002/aisy.202500310) integrate McKibben muscles and elastic cords across tensegrity structures to create distributed, fault-tolerant morphing joints with variable stiffness. <b>Demirtas</b> <i>et al.</i> (doi: 10.1002/aisy.202500142) unveil Digits, a modular haptic interface whose pneumatic “fingers” tune stiffness and geometry in real time for VR and rehabilitation.</p><p>As shape-morphing robots increase in complexity and degrees of freedom, new modeling and control strategies are essential to predict, plan, and govern their high-dimensional, often nonlinear behavior. <b>Li</b> <i>et al.</i> (doi: 10.1002/aisy.202500141) provide a unifying modeling tool: a discrete-differential-geometry simulator that captures stretching, bending, and twisting of bilayer morphing structures with high fidelity and efficient computation. <b>Wang</b> <i>et al.</i> (doi: 10.1002/aisy.202400550) introduce Shape Morphing Net (SMNet), a point-cloud–driven deep-learning controller that maps arbitrary 3D targets to high-dimensional actuator commands, achieving nearly 98% reproduction accuracy across multiple actuator technologies. <b>Huang</b> <i>et al.</i> (doi: 10.1002/aisy.202500365) implement a hybrid control system combining feedforward inverse dynamics (based on an empirical pressure–force model) with PID feedback from thin-film sensors to regulate massage force over acupoints. <b>Demirtas</b> <i>et al.</i> (doi: 10.1002/aisy.202500142) propose a modular control architecture for their haptic platform. Local pressure is controlled per module, and minimal sensing is interpreted via lightweight machine learning models to infer stiffness and interaction states.</p><p>A common thread across the papers in this issue is the move from single, centralized motors toward spatially distributed actuation paired with in-situ sensing, yielding richer deformation vocabularies and finer closed-loop control. <b>Khan</b> <i>et al.</i> (doi: 10.1002/aisy.202400620) embed magnetized veins throughout each wing panel; every segment contributes a micro-torque, allowing smooth bending waves and passive shape recovery without bulky servos. <b>Ramirez</b> <i>et al.</i> (doi: 10.1002/aisy.202401055) combine kirigami skins with multiple vacuum-jamming chambers and fiber-reinforced pneumatic bladders; by tuning pressure locally, the robot independently shapes each limb. <b>Jensen</b> <i>et al.</i> (doi: 10.1002/aisy.202500422) distribute contact forces along DAWN's body via dual helices under an elastomeric skin, improving terrain compliance and fault tolerance. <b>Chen</b> <i>et al.</i> (doi: 10.1002/aisy.202500123) place shape-memory-alloy springs between pairs of tessellated particles, enabling gradient-controlled curvature and local stiffness tuning. <b>Demirtas</b> <i>et al.</i> (doi: 10.1002/aisy.202500142) and <b>Huang</b> <i>et al.</i> (doi: 10.1002/aisy.202500365) embed soft sensors beneath pneumatic actuators for localized state feedback and adaptive control. <b>Samarakoon</b> <i>et al.</i> (doi: 10.1002/aisy.202400417) design hinge placement across tiling units to enable sequential morphological transitions. <b>Wang</b> <i>et al.</i> (doi: 10.1002/aisy.202400550) treat actuator arrays as a high-dimensional control surface, while <b>Li</b> <i>et al.</i> (doi: 10.1002/aisy.202500141) model strain mismatches in bilayer systems to drive global deformations. Together, these systems reflect a paradigm shift: actuation and sensing are no longer appended but deeply embedded throughout the robots’ structures, offering new frontiers in adaptability, robustness, and intelligence.</p><p>By integrating insights from biology with advances in smart materials, fabrication, and learning-based control, the contributions in this issue push shape-morphing robotics toward truly adaptive, resilient, and multifunctional machines. We anticipate that the principles and platforms showcased here will catalyze the next generation of robots capable not just of motion, but of continual self-reconfiguration in the face of an ever-changing world.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202500878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable capability of living organisms to reshape themselves—whether the compliant deformation of musculoskeletal structure, the origami-like folding of a butterfly's wing, or the stiffness modulation of a turtle flipper—continues to inspire breakthroughs in robotic design. Nature reveals that form and function are inherently coupled and adaptability is rooted in intelligent mechanical design, e.g., materials and structures. This special issue of Advanced Intelligent Systems assembles the latest progress in shape-morphing robotics and machines that alter their physical geometry to achieve adaptive properties in response to changing environments, task demands, or unexpected disturbances.

Shape-morphing robots lie at the intersection of materials science, mechanical design, and intelligent control. Several contributions translate biological strategies directly into engineered systems. Khan et al. (doi: 10.1002/aisy.202400620) fabricate 3D-printed magnetic butterflies whose vein-embedded composites replicate monarch wing folding, delivering agile, energy-efficient aerial maneuvers. Ramirez et al. (doi: 10.1002/aisy.202401055) present JART, an amphibious robot that uses kirigami-layer jamming to toggle between flippers and legs, cutting morphing energy by approximately 98% relative to thermally driven designs. Jensen et al. (doi: 10.1002/aisy.202500422) describe DAWN, a dual-helical, wave-propelled crawler whose elastomer skins boost friction and shield internal linkages, letting it traverse sand, gravel, and wet soil. Huang et al. (doi: 10.1002/aisy.202500365) mimic human digits in a wearable pneumatic physiotherapy device that integrates actuation, sensing, and control for on-body, customizable massage. These studies showcase how biomimicry delivers both functional versatility and structural elegance, yet also highlight enduring challenges—continuous materials integration, long-term durability, and tightly coupled actuation–sensing architectures.

A recurring theme in this issue is multi-modal morphologies: the robots will tailor not only shape, but also properties, such as stiffness, for high load-bearing capabilities. In terms of shapes, Chen et al. (doi: 10.1002/aisy.202500123) achieve this through tunable-stiffness architecture morphing structures (TSAMS) that exhibit over 300-fold tunable stiffness range using shape memory alloy actuators. Samarakoon et al. (doi: 10.1002/aisy.202400417) further our understanding of the tiling robots through design, kinematic modeling and control of polyform-inspired robots capable of transforming between two polymorphic shapes, and establishing a taxonomy for scalable morphing tiling robots. Petrš et al. (doi: 10.1002/aisy.202500310) integrate McKibben muscles and elastic cords across tensegrity structures to create distributed, fault-tolerant morphing joints with variable stiffness. Demirtas et al. (doi: 10.1002/aisy.202500142) unveil Digits, a modular haptic interface whose pneumatic “fingers” tune stiffness and geometry in real time for VR and rehabilitation.

As shape-morphing robots increase in complexity and degrees of freedom, new modeling and control strategies are essential to predict, plan, and govern their high-dimensional, often nonlinear behavior. Li et al. (doi: 10.1002/aisy.202500141) provide a unifying modeling tool: a discrete-differential-geometry simulator that captures stretching, bending, and twisting of bilayer morphing structures with high fidelity and efficient computation. Wang et al. (doi: 10.1002/aisy.202400550) introduce Shape Morphing Net (SMNet), a point-cloud–driven deep-learning controller that maps arbitrary 3D targets to high-dimensional actuator commands, achieving nearly 98% reproduction accuracy across multiple actuator technologies. Huang et al. (doi: 10.1002/aisy.202500365) implement a hybrid control system combining feedforward inverse dynamics (based on an empirical pressure–force model) with PID feedback from thin-film sensors to regulate massage force over acupoints. Demirtas et al. (doi: 10.1002/aisy.202500142) propose a modular control architecture for their haptic platform. Local pressure is controlled per module, and minimal sensing is interpreted via lightweight machine learning models to infer stiffness and interaction states.

A common thread across the papers in this issue is the move from single, centralized motors toward spatially distributed actuation paired with in-situ sensing, yielding richer deformation vocabularies and finer closed-loop control. Khan et al. (doi: 10.1002/aisy.202400620) embed magnetized veins throughout each wing panel; every segment contributes a micro-torque, allowing smooth bending waves and passive shape recovery without bulky servos. Ramirez et al. (doi: 10.1002/aisy.202401055) combine kirigami skins with multiple vacuum-jamming chambers and fiber-reinforced pneumatic bladders; by tuning pressure locally, the robot independently shapes each limb. Jensen et al. (doi: 10.1002/aisy.202500422) distribute contact forces along DAWN's body via dual helices under an elastomeric skin, improving terrain compliance and fault tolerance. Chen et al. (doi: 10.1002/aisy.202500123) place shape-memory-alloy springs between pairs of tessellated particles, enabling gradient-controlled curvature and local stiffness tuning. Demirtas et al. (doi: 10.1002/aisy.202500142) and Huang et al. (doi: 10.1002/aisy.202500365) embed soft sensors beneath pneumatic actuators for localized state feedback and adaptive control. Samarakoon et al. (doi: 10.1002/aisy.202400417) design hinge placement across tiling units to enable sequential morphological transitions. Wang et al. (doi: 10.1002/aisy.202400550) treat actuator arrays as a high-dimensional control surface, while Li et al. (doi: 10.1002/aisy.202500141) model strain mismatches in bilayer systems to drive global deformations. Together, these systems reflect a paradigm shift: actuation and sensing are no longer appended but deeply embedded throughout the robots’ structures, offering new frontiers in adaptability, robustness, and intelligence.

By integrating insights from biology with advances in smart materials, fabrication, and learning-based control, the contributions in this issue push shape-morphing robotics toward truly adaptive, resilient, and multifunctional machines. We anticipate that the principles and platforms showcased here will catalyze the next generation of robots capable not just of motion, but of continual self-reconfiguration in the face of an ever-changing world.

Abstract Image

Abstract Image

Abstract Image

变形机器人:从基本原理到自适应机器
生物体重塑自身的非凡能力——无论是肌肉骨骼结构的柔顺变形,蝴蝶翅膀的折纸式折叠,还是海龟鳍状肢的刚度调节——不断激发着机器人设计的突破。自然揭示了形式和功能是内在耦合的,适应性根植于智能机械设计,例如材料和结构。本期《高级智能系统》特刊汇集了形状变形机器人和机器的最新进展,这些机器人和机器可以改变其物理几何形状,以适应不断变化的环境、任务需求或意外干扰。变形机器人是材料科学、机械设计和智能控制的交叉领域。一些贡献将生物策略直接转化为工程系统。Khan等人(doi: 10.1002/aisy. doi: 10.1002/aisy。)202400620)制造3d打印磁性蝴蝶,其嵌入血管的复合材料复制君主翅膀折叠,提供灵活,节能的空中机动。Ramirez et al. (doi: 10.1002/ aisisy。)202401055)展示了JART,一种两栖机器人,它使用基里伽米层干扰在脚蹼和腿之间切换,相对于热驱动的设计,它可以减少大约98%的变形能量。Jensen et al. (doi: 10.1002/ aisisy。)[202500422]介绍了DAWN,这是一种双螺旋、波浪推进的履带式机器人,其弹性体外壳增加了摩擦,保护了内部连接,使其能够穿越沙子、砾石和潮湿的土壤。黄等人(doi: 10.1002/aisy. doi: 10.1002/aisy。)202500365)在可穿戴气动物理治疗设备中模拟人类手指,该设备集成了对身体可定制按摩的驱动、传感和控制。这些研究展示了仿生学如何提供功能的多功能性和结构的优雅性,但也突出了持久的挑战-连续材料集成,长期耐用性和紧密耦合的驱动传感结构。这个问题的一个反复出现的主题是多模态形态:机器人不仅可以定制形状,还可以定制属性,例如刚度,以获得高承载能力。在形状方面,Chen等人(doi: 10.1002/aisy。202500123)通过可调刚度结构变形结构(TSAMS)实现了这一目标,该结构使用形状记忆合金执行器,具有超过300倍的可调刚度范围。Samarakoon et al. (doi: 10.1002/aisy。)202400417)通过设计、运动学建模和控制能够在两种多态形状之间转换的多形启发机器人,并建立可扩展变形平铺机器人的分类,进一步加深了我们对平铺机器人的理解。Petrš et al. (doi: 10.1002/aisy。)202500310)在张拉整体结构中集成McKibben肌肉和弹性绳,以创建具有可变刚度的分布式容错变形关节。Demirtas等人(doi: 10.1002/aisy。)202500142)推出Digits,这是一个模块化的触觉界面,其气动“手指”可以实时调整VR和康复的刚度和几何形状。随着形状变形机器人的复杂性和自由度的增加,新的建模和控制策略对于预测、计划和管理它们的高维、通常是非线性的行为是必不可少的。[doi: 10.1002/ aisisy .]202500141)提供了一个统一的建模工具:一个离散微分几何模拟器,以高保真度和高效的计算捕获双层变形结构的拉伸,弯曲和扭曲。Wang et al. (doi: 10.1002/aisy。)202400550)引入了Shape Morphing Net (SMNet),这是一种点云驱动的深度学习控制器,可将任意3D目标映射到高维执行器命令,跨多种执行器技术实现近98%的再现精度。黄等人(doi: 10.1002/aisy. doi: 10.1002/aisy。)202500365)实现了一种混合控制系统,将前馈逆动力学(基于经验压力-力模型)与薄膜传感器的PID反馈相结合,以调节穴位上的按摩力。Demirtas等人(doi: 10.1002/aisy。)202500142)为他们的触觉平台提出了模块化控制架构。每个模块控制局部压力,并通过轻量级机器学习模型解释最小感知,以推断刚度和相互作用状态。这期论文的一个共同点是,从单一的、集中的电机转向与原位传感相结合的空间分布式驱动,从而产生更丰富的变形词汇和更精细的闭环控制。Khan等人(doi: 10.1002/aisy. doi: 10.1002/aisy。)202400620)在每个翼板上嵌入磁化脉;每个部分都提供微扭矩,允许平滑弯曲波和被动形状恢复,而无需笨重的伺服器。Ramirez et al. (doi: 10.1002/ aisisy。)202401055)将基利伽米皮肤与多个真空干扰室和纤维增强气动气囊相结合;通过局部调节压力,机器人可以独立塑造每个肢体。Jensen et al. (doi: 10.1002/ aisisy。) 202500422)通过弹性外壳下的双螺旋将接触力分布在DAWN机身上,提高了地形顺应性和容错性。Chen et al. (doi: 10.1002/aisy。)202500123)将形状记忆合金弹簧置于镶嵌粒子对之间,实现梯度控制曲率和局部刚度调谐。Demirtas等人(doi: 10.1002/aisy。)202500142), Huang等人(doi: 10.1002/aisy. doi: 10.1002/aisy. doi: 10.1002/aisy。202500365)在气动执行器下嵌入软传感器,用于局部状态反馈和自适应控制。Samarakoon et al. (doi: 10.1002/aisy。)202400417)设计铰链放置在瓷砖单元上,以实现顺序的形态转换。Wang et al. (doi: 10.1002/aisy。)202400550)将致动器阵列视为高维控制面,而Li等人(doi: 10.1002/ aisisy。[202500141]双层系统模型应变失配驱动全局变形。总之,这些系统反映了一种范式转变:驱动和传感不再是附加的,而是深深嵌入到机器人的结构中,为适应性、稳健性和智能提供了新的前沿。通过将生物学的见解与智能材料,制造和基于学习的控制的进步相结合,本期的贡献将形状变形机器人推向真正自适应,有弹性和多功能的机器。我们预计,这里展示的原理和平台将催化下一代机器人,不仅能够运动,而且能够在面对不断变化的世界时不断自我重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信