Long-Term Cambial Phenology Reveals Diverging Growth Responses of Two Tree Species in a Mixed Forest Under Climate Change

IF 12 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
David Almagro, Darío Martin-Benito, Sergio Rossi, María Conde, Laura Fernández-de-Uña, Guillermo Gea-Izquierdo
{"title":"Long-Term Cambial Phenology Reveals Diverging Growth Responses of Two Tree Species in a Mixed Forest Under Climate Change","authors":"David Almagro,&nbsp;Darío Martin-Benito,&nbsp;Sergio Rossi,&nbsp;María Conde,&nbsp;Laura Fernández-de-Uña,&nbsp;Guillermo Gea-Izquierdo","doi":"10.1111/gcb.70503","DOIUrl":null,"url":null,"abstract":"<p>The net effect of stress induced by climate change on forest functional dynamics remains uncertain. We monitored the dynamics of wood formation and cambial phenology for 11 consecutive years in two co-occurring tree species with different drought tolerance, <i>Pinus sylvestris</i> and <i>Quercus pyrenaica</i>, providing a unique long-term xylogenesis dataset (2012–2022). To assess the influence of climate on cambial and xylem developmental phases, we analyzed biologically meaningful climatic covariates across different time windows. In pine, late-winter temperatures strongly regulated the onset of cambial reactivation, advancing it 5.5 days per°C of warming, with reactivation occurring between early April and mid-May depending on winter thermal conditions. The onset of cambial reactivation in oaks was influenced both by soil water content and late-winter temperature, although the effect of temperature was weaker and restricted to a narrower time window than in pines. The effect of climate on the end of enlargement was nearly identical in both species, consistent with a turgor-driven regulation: higher maximum temperatures accelerated the process, whereas late-spring precipitation in late spring delayed it. In oaks and pines, the end of wood formation was advanced under hot and dry summers, inducing the early cessation of secondary wall lignification and, thus, reducing the length of xylogenesis. Despite the positive effect of warmer winters on earlier cambial resumption in pines, the duration of the enlargement phase (i.e., radial growth period) remained consistently shorter than in the more drought-tolerant oaks. Yet, the high phenological pasticity of pines to winter temperatures may also increase their growth duration, thereby partially buffering the negative effects of hotter droughts. The long dataset analyzed provided a robust assessment of species-specific phenological plasticity under climate change. Disentangling the net effect of climate on xylogenesis is crucial to understand future growth dynamics in mixed forests where more drought-tolerant species are becoming increasingly dominant.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70503","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The net effect of stress induced by climate change on forest functional dynamics remains uncertain. We monitored the dynamics of wood formation and cambial phenology for 11 consecutive years in two co-occurring tree species with different drought tolerance, Pinus sylvestris and Quercus pyrenaica, providing a unique long-term xylogenesis dataset (2012–2022). To assess the influence of climate on cambial and xylem developmental phases, we analyzed biologically meaningful climatic covariates across different time windows. In pine, late-winter temperatures strongly regulated the onset of cambial reactivation, advancing it 5.5 days per°C of warming, with reactivation occurring between early April and mid-May depending on winter thermal conditions. The onset of cambial reactivation in oaks was influenced both by soil water content and late-winter temperature, although the effect of temperature was weaker and restricted to a narrower time window than in pines. The effect of climate on the end of enlargement was nearly identical in both species, consistent with a turgor-driven regulation: higher maximum temperatures accelerated the process, whereas late-spring precipitation in late spring delayed it. In oaks and pines, the end of wood formation was advanced under hot and dry summers, inducing the early cessation of secondary wall lignification and, thus, reducing the length of xylogenesis. Despite the positive effect of warmer winters on earlier cambial resumption in pines, the duration of the enlargement phase (i.e., radial growth period) remained consistently shorter than in the more drought-tolerant oaks. Yet, the high phenological pasticity of pines to winter temperatures may also increase their growth duration, thereby partially buffering the negative effects of hotter droughts. The long dataset analyzed provided a robust assessment of species-specific phenological plasticity under climate change. Disentangling the net effect of climate on xylogenesis is crucial to understand future growth dynamics in mixed forests where more drought-tolerant species are becoming increasingly dominant.

Abstract Image

长期形成层物候揭示气候变化下混交林两树种生长响应的差异
气候变化引起的压力对森林功能动态的净影响尚不确定。通过连续11年对两种不同耐旱性的共生树种——西林松(Pinus sylvestris)和黄栎(Quercus pyrenaica)木材形成和形成层物候的动态监测,建立了独特的长期木质学数据(2012-2022)。为了评估气候对形成层和木质部发育阶段的影响,我们分析了不同时间窗的有生物学意义的气候协变量。在松木中,冬末温度强烈调节了形成层再激活的开始,每升温°C提前5.5天,再激活发生在4月初至5月中旬,具体取决于冬季热条件。土壤含水量和冬末温度对栎树形成层恢复的影响较弱,且影响时间窗较窄。在这两个物种中,气候对扩大末端的影响几乎是相同的,与暴胀驱动的规律一致:较高的最高温度加速了这一过程,而晚春的晚春降水则推迟了这一过程。在橡树和松树中,在炎热干燥的夏季,木材形成的结束提前,诱导次生壁木质化的早期停止,从而减少木质化的长度。尽管暖冬对松林早期形成层恢复有积极影响,但其扩大期(即径向生长期)的持续时间始终比耐旱的栎树短。然而,松树对冬季温度的高物候适应性也可能增加其生长期,从而部分缓冲高温干旱的负面影响。分析的长数据集提供了气候变化下物种特异性物候可塑性的可靠评估。解开气候对木材发生的净效应对于理解未来混交林的生长动态至关重要,在混交林中,更多的耐旱物种正变得越来越占优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信