David Almagro, Darío Martin-Benito, Sergio Rossi, María Conde, Laura Fernández-de-Uña, Guillermo Gea-Izquierdo
{"title":"Long-Term Cambial Phenology Reveals Diverging Growth Responses of Two Tree Species in a Mixed Forest Under Climate Change","authors":"David Almagro, Darío Martin-Benito, Sergio Rossi, María Conde, Laura Fernández-de-Uña, Guillermo Gea-Izquierdo","doi":"10.1111/gcb.70503","DOIUrl":null,"url":null,"abstract":"<p>The net effect of stress induced by climate change on forest functional dynamics remains uncertain. We monitored the dynamics of wood formation and cambial phenology for 11 consecutive years in two co-occurring tree species with different drought tolerance, <i>Pinus sylvestris</i> and <i>Quercus pyrenaica</i>, providing a unique long-term xylogenesis dataset (2012–2022). To assess the influence of climate on cambial and xylem developmental phases, we analyzed biologically meaningful climatic covariates across different time windows. In pine, late-winter temperatures strongly regulated the onset of cambial reactivation, advancing it 5.5 days per°C of warming, with reactivation occurring between early April and mid-May depending on winter thermal conditions. The onset of cambial reactivation in oaks was influenced both by soil water content and late-winter temperature, although the effect of temperature was weaker and restricted to a narrower time window than in pines. The effect of climate on the end of enlargement was nearly identical in both species, consistent with a turgor-driven regulation: higher maximum temperatures accelerated the process, whereas late-spring precipitation in late spring delayed it. In oaks and pines, the end of wood formation was advanced under hot and dry summers, inducing the early cessation of secondary wall lignification and, thus, reducing the length of xylogenesis. Despite the positive effect of warmer winters on earlier cambial resumption in pines, the duration of the enlargement phase (i.e., radial growth period) remained consistently shorter than in the more drought-tolerant oaks. Yet, the high phenological pasticity of pines to winter temperatures may also increase their growth duration, thereby partially buffering the negative effects of hotter droughts. The long dataset analyzed provided a robust assessment of species-specific phenological plasticity under climate change. Disentangling the net effect of climate on xylogenesis is crucial to understand future growth dynamics in mixed forests where more drought-tolerant species are becoming increasingly dominant.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70503","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The net effect of stress induced by climate change on forest functional dynamics remains uncertain. We monitored the dynamics of wood formation and cambial phenology for 11 consecutive years in two co-occurring tree species with different drought tolerance, Pinus sylvestris and Quercus pyrenaica, providing a unique long-term xylogenesis dataset (2012–2022). To assess the influence of climate on cambial and xylem developmental phases, we analyzed biologically meaningful climatic covariates across different time windows. In pine, late-winter temperatures strongly regulated the onset of cambial reactivation, advancing it 5.5 days per°C of warming, with reactivation occurring between early April and mid-May depending on winter thermal conditions. The onset of cambial reactivation in oaks was influenced both by soil water content and late-winter temperature, although the effect of temperature was weaker and restricted to a narrower time window than in pines. The effect of climate on the end of enlargement was nearly identical in both species, consistent with a turgor-driven regulation: higher maximum temperatures accelerated the process, whereas late-spring precipitation in late spring delayed it. In oaks and pines, the end of wood formation was advanced under hot and dry summers, inducing the early cessation of secondary wall lignification and, thus, reducing the length of xylogenesis. Despite the positive effect of warmer winters on earlier cambial resumption in pines, the duration of the enlargement phase (i.e., radial growth period) remained consistently shorter than in the more drought-tolerant oaks. Yet, the high phenological pasticity of pines to winter temperatures may also increase their growth duration, thereby partially buffering the negative effects of hotter droughts. The long dataset analyzed provided a robust assessment of species-specific phenological plasticity under climate change. Disentangling the net effect of climate on xylogenesis is crucial to understand future growth dynamics in mixed forests where more drought-tolerant species are becoming increasingly dominant.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.