Interfacial Modification of High-Voltage LiCoO2 Materials via Ti/Mg Doping Strategy for Inhibiting Harmful Phase Transition Effect

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Shi, Tao Zhou, Teng Wang, Xuan Du, Jingfeng Wang, Yinwei Liu, Guo Gao
{"title":"Interfacial Modification of High-Voltage LiCoO2 Materials via Ti/Mg Doping Strategy for Inhibiting Harmful Phase Transition Effect","authors":"Peng Shi,&nbsp;Tao Zhou,&nbsp;Teng Wang,&nbsp;Xuan Du,&nbsp;Jingfeng Wang,&nbsp;Yinwei Liu,&nbsp;Guo Gao","doi":"10.1002/agt2.70105","DOIUrl":null,"url":null,"abstract":"<p>Developing high voltage lithium cobalt oxide (LiCoO<sub>2</sub>, LCO) is crucial for attaining the enhanced capacity and energy density of lithium-ion batteries. However, severe interface and structural instability lead to rapid degradation of LCO under the condition of high voltage. Herein, a successful strategy for modifying the interface of LCO is developed using a one-step high temperature process. By coating LCO with Li<sub>3</sub>TiMg(PO<sub>4</sub>)<sub>3</sub> (LTMP), the obtained phosphate can stabilize the surface crystal structure and boost the mechanical stability of LCO. The high temperature process enables the successful doping of Ti/Mg into the LCO lattice, effectively inhibiting the harmful phase transition effect across various voltage ranges. Compared to commercial LCO and the reported studies, the modified LCO@LTMP performs outstanding electrochemical performance. It delivers an initial discharge specific capacity of 216.4 mAh·g<sup>−1</sup> at 0.1 C and 189.98 mAh·g<sup>−1</sup> at 1 C. After 250 cycles at 1 C, it preserves 87.46% of its initial capacity, manifesting excellent cycling stability. Moreover, it provides a discharge specific capacity of 115.9 mAh·g<sup>−1</sup> at 5 C, demonstrating outstanding rate performance. This work holds great potential for practical applications and offers valuable guidance for developing other high performance cathode materials in rechargeable batteries.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 9","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high voltage lithium cobalt oxide (LiCoO2, LCO) is crucial for attaining the enhanced capacity and energy density of lithium-ion batteries. However, severe interface and structural instability lead to rapid degradation of LCO under the condition of high voltage. Herein, a successful strategy for modifying the interface of LCO is developed using a one-step high temperature process. By coating LCO with Li3TiMg(PO4)3 (LTMP), the obtained phosphate can stabilize the surface crystal structure and boost the mechanical stability of LCO. The high temperature process enables the successful doping of Ti/Mg into the LCO lattice, effectively inhibiting the harmful phase transition effect across various voltage ranges. Compared to commercial LCO and the reported studies, the modified LCO@LTMP performs outstanding electrochemical performance. It delivers an initial discharge specific capacity of 216.4 mAh·g−1 at 0.1 C and 189.98 mAh·g−1 at 1 C. After 250 cycles at 1 C, it preserves 87.46% of its initial capacity, manifesting excellent cycling stability. Moreover, it provides a discharge specific capacity of 115.9 mAh·g−1 at 5 C, demonstrating outstanding rate performance. This work holds great potential for practical applications and offers valuable guidance for developing other high performance cathode materials in rechargeable batteries.

Abstract Image

Ti/Mg掺杂抑制有害相变效应的高压LiCoO2材料界面改性
开发高压钴酸锂(LiCoO2, LCO)是提高锂离子电池容量和能量密度的关键。然而,在高压条件下,严重的界面和结构不稳定导致LCO的快速降解。本文提出了一种利用一步高温工艺修改LCO界面的成功策略。用Li3TiMg(PO4)3 (LTMP)包覆LCO,得到的磷酸盐可以稳定LCO的表面晶体结构,提高LCO的机械稳定性。高温工艺使Ti/Mg成功掺杂到LCO晶格中,有效抑制了不同电压范围内的有害相变效应。与商用LCO和已有报道的研究相比,改性LCO@LTMP具有优异的电化学性能。在0.1 C和1 C条件下,其初始放电比容量分别为216.4 mAh·g−1和189.98 mAh·g−1。在1 C条件下,经过250次循环后,其保留了初始容量的87.46%,表现出优异的循环稳定性。此外,它在5℃下提供了115.9 mAh·g−1的放电比容量,表现出出色的倍率性能。这项工作具有很大的实际应用潜力,并为开发其他高性能的可充电电池正极材料提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信