{"title":"Harnessing the Biological Responses Induced by Nanomaterials for Enhanced Cancer Therapy","authors":"Liting Wang, Hao Fu, Jiangtao Lin, Meng Zhao, Chuanrong Chen, Hongze Liao, Yourong Duan","doi":"10.1002/agt2.70080","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials (NMs) have garnered decades of research interest owing to their unique physicochemical properties and unparalleled advantages in diverse applications. However, these distinctive characteristics simultaneously raise concerns regarding their biosafety. Recent advancements in understanding NMs–organism interactions have led to innovative strategies for mitigating their intrinsic toxicity. Notably, emerging studies reveal that through rational design and precise manipulation, the inherent toxicological effects of NMs can be strategically repurposed for cancer therapeutics. For instance, functionalized NMs may disrupt oxidative homeostasis, activate programmed cell death pathways, modulate immune responses, or regulate ion channel activities. Despite these promising discoveries, the systematic exploitation of NMs-induced biological responses in oncological interventions remains underexplored. Therefore, this review provides, for the first time, a comprehensive introduction to NM-mediated biological process modulation, focusing on their mechanisms and therapeutic potential in cancer treatment. We have summarized (1) key pathways through which NMs elicit cytotoxic effects, including redox homeostasis regulation, immunogenic cell death activation, and so on; (2) design principles for engineering NMs with controllable bio-interactions; and (3) innovative applications leveraging NM-triggered physical effects (e.g., photothermal conversion, reactive oxygen species generation) as targeted therapeutic modalities. Furthermore, we also highlight the translational significance of harnessing NM-specific bioactivities while discussing current challenges in clinical adaptation and possible solutions. By bridging the gap between nanotoxicology and therapeutic innovation, this manuscript offers novel perspectives for developing next-generation nanomedicine platforms with enhanced efficacy and safety profiles.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 9","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials (NMs) have garnered decades of research interest owing to their unique physicochemical properties and unparalleled advantages in diverse applications. However, these distinctive characteristics simultaneously raise concerns regarding their biosafety. Recent advancements in understanding NMs–organism interactions have led to innovative strategies for mitigating their intrinsic toxicity. Notably, emerging studies reveal that through rational design and precise manipulation, the inherent toxicological effects of NMs can be strategically repurposed for cancer therapeutics. For instance, functionalized NMs may disrupt oxidative homeostasis, activate programmed cell death pathways, modulate immune responses, or regulate ion channel activities. Despite these promising discoveries, the systematic exploitation of NMs-induced biological responses in oncological interventions remains underexplored. Therefore, this review provides, for the first time, a comprehensive introduction to NM-mediated biological process modulation, focusing on their mechanisms and therapeutic potential in cancer treatment. We have summarized (1) key pathways through which NMs elicit cytotoxic effects, including redox homeostasis regulation, immunogenic cell death activation, and so on; (2) design principles for engineering NMs with controllable bio-interactions; and (3) innovative applications leveraging NM-triggered physical effects (e.g., photothermal conversion, reactive oxygen species generation) as targeted therapeutic modalities. Furthermore, we also highlight the translational significance of harnessing NM-specific bioactivities while discussing current challenges in clinical adaptation and possible solutions. By bridging the gap between nanotoxicology and therapeutic innovation, this manuscript offers novel perspectives for developing next-generation nanomedicine platforms with enhanced efficacy and safety profiles.