Gabriela Françozo Vilela, Juliana Garcia, Matheus Julien Ferreira Bazzana, Pedro Augusto dos Santos, Zuy Maria Magriotis, Sérgio Scherrer Thomasi, Leonardo Luiz Okumura, Tatiana Cardoso e Bufalo, Adelir Aparecida Saczk
{"title":"Development of Electrochemical Sensor Modified with Murumuru Biochar for Nicotinic Acid Determination","authors":"Gabriela Françozo Vilela, Juliana Garcia, Matheus Julien Ferreira Bazzana, Pedro Augusto dos Santos, Zuy Maria Magriotis, Sérgio Scherrer Thomasi, Leonardo Luiz Okumura, Tatiana Cardoso e Bufalo, Adelir Aparecida Saczk","doi":"10.1002/elan.70061","DOIUrl":null,"url":null,"abstract":"<p>Nicotinic acid (NA) is a free form of vitamin B3, and its altered levels in the human body can lead to serious clinical complications. Therefore, analytical methods to monitor this molecule must be developed. Voltammetric techniques have become viable because of their short analysis time and low associated cost. Thus, in this study, murumuru biochar (MBC) electrode was evaluated for NA determination using the differential pulse voltammetry (DPV) technique. The proportion of carbon paste was adjusted through the design of mixtures, resulting in proportions of 36.6% binder, 31.7% MBC, and 31.7% graphite. KCl (0.1 mol L<sup>−1</sup>) acidified with HClO<sub>4</sub> at pH 2 was selected as the supporting electrolyte. DPV analyses were performed with a step of 5 mV, a pulse amplitude of 100 mV, a time interval of 75 ms, and a modulation time of 2 ms. The analytical curve presented an <i>r</i><sup>2</sup> of 0.999 in a linear range from 4 to 100 μmol L<sup>−1</sup>. The limit of detection (LOD) was 0.36 μmol L<sup>−1</sup>, and the limit of quantification (LOQ) was 1.20 μmol L<sup>−1</sup>. Based on the obtained analytical curve, NA was quantified in samples of multivitamins and synthetic urine, and satisfactory results were shown.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.70061","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotinic acid (NA) is a free form of vitamin B3, and its altered levels in the human body can lead to serious clinical complications. Therefore, analytical methods to monitor this molecule must be developed. Voltammetric techniques have become viable because of their short analysis time and low associated cost. Thus, in this study, murumuru biochar (MBC) electrode was evaluated for NA determination using the differential pulse voltammetry (DPV) technique. The proportion of carbon paste was adjusted through the design of mixtures, resulting in proportions of 36.6% binder, 31.7% MBC, and 31.7% graphite. KCl (0.1 mol L−1) acidified with HClO4 at pH 2 was selected as the supporting electrolyte. DPV analyses were performed with a step of 5 mV, a pulse amplitude of 100 mV, a time interval of 75 ms, and a modulation time of 2 ms. The analytical curve presented an r2 of 0.999 in a linear range from 4 to 100 μmol L−1. The limit of detection (LOD) was 0.36 μmol L−1, and the limit of quantification (LOQ) was 1.20 μmol L−1. Based on the obtained analytical curve, NA was quantified in samples of multivitamins and synthetic urine, and satisfactory results were shown.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.