The High Anti-CO Poisoning Anode Catalyst Based on Platinum–NbOx Interaction for Proton Exchange Membrane Fuel Cell

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Dan Lu, Guang Zhu, Wei Liu, Kaixin Wang, Qixuan Wang, Chenxi Xu
{"title":"The High Anti-CO Poisoning Anode Catalyst Based on Platinum–NbOx Interaction for Proton Exchange Membrane Fuel Cell","authors":"Dan Lu,&nbsp;Guang Zhu,&nbsp;Wei Liu,&nbsp;Kaixin Wang,&nbsp;Qixuan Wang,&nbsp;Chenxi Xu","doi":"10.1002/ente.202402044","DOIUrl":null,"url":null,"abstract":"<p>The Pt/C catalysts applied in proton exchange membrane fuel cell (PEMFC) suffer CO poisoning in the anode, which notably deteriorates the device performance. The metal–support interaction that decreases the CO oxidation stripping potential is a suitable way to prevent CO anchoring the active sites that can reduce or even avoid the poisoning. Herein, the Pt is supported by amorphous NbO<sub><i>x</i></sub> (<i>x</i> = 1.0–2.5) and CNT to form Pt@NbO<sub><i>x</i></sub> + CNT catalyst, which not only displays the lower initial and peak CO oxidation stripping potential but also exhibits the striking anti-CO poisoning and hydrogen oxidation reaction properties. The initial and peak potential for oxidation stripping of Pt@NbO<sub><i>x</i></sub> + CNT catalyst are 0.162 and 0.332 V, respectively. Moreover, the PEMFC based on Pt@NbO<sub><i>x</i></sub> + CNT catalyst in 100 ppm CO/H<sub>2</sub> exhibits a peak power density of 1.98 W cm<sup>−2</sup>, only 17% reduction compared to that in pure hydrogen and the catalyst remains 10 h stability at 0.4 V.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Pt/C catalysts applied in proton exchange membrane fuel cell (PEMFC) suffer CO poisoning in the anode, which notably deteriorates the device performance. The metal–support interaction that decreases the CO oxidation stripping potential is a suitable way to prevent CO anchoring the active sites that can reduce or even avoid the poisoning. Herein, the Pt is supported by amorphous NbOx (x = 1.0–2.5) and CNT to form Pt@NbOx + CNT catalyst, which not only displays the lower initial and peak CO oxidation stripping potential but also exhibits the striking anti-CO poisoning and hydrogen oxidation reaction properties. The initial and peak potential for oxidation stripping of Pt@NbOx + CNT catalyst are 0.162 and 0.332 V, respectively. Moreover, the PEMFC based on Pt@NbOx + CNT catalyst in 100 ppm CO/H2 exhibits a peak power density of 1.98 W cm−2, only 17% reduction compared to that in pure hydrogen and the catalyst remains 10 h stability at 0.4 V.

基于铂- nbox相互作用的质子交换膜燃料电池高抗co中毒阳极催化剂
质子交换膜燃料电池(PEMFC)中使用的Pt/C催化剂在阳极存在CO中毒,严重影响了器件性能。降低CO氧化剥离电位的金属-载体相互作用是防止CO锚定活性位点的一种合适的方法,可以减少甚至避免中毒。其中,Pt由非晶NbOx (x = 1.0-2.5)和CNT负载形成Pt@NbOx + CNT催化剂,不仅具有较低的CO氧化剥离电位和峰值,而且具有显著的抗CO中毒和氢氧化反应性能。Pt@NbOx +碳纳米管催化剂氧化剥离的起始电位和峰值电位分别为0.162 V和0.332 V。此外,在100 ppm CO/H2条件下,Pt@NbOx + CNT催化剂的PEMFC的峰值功率密度为1.98 W cm−2,比纯氢条件下的峰值功率密度仅降低17%,且在0.4 V电压下仍保持10 h的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信