Advanced Contactless Bioassembly Approaches: Leveraging Sound, Optical, and Magnetic Fields

IF 4.4 Q2 ENGINEERING, BIOMEDICAL
Micaela Natta, Greta Cocchi, Riccardo Tognato, Alessandro Cianciosi, Tiziano Serra
{"title":"Advanced Contactless Bioassembly Approaches: Leveraging Sound, Optical, and Magnetic Fields","authors":"Micaela Natta,&nbsp;Greta Cocchi,&nbsp;Riccardo Tognato,&nbsp;Alessandro Cianciosi,&nbsp;Tiziano Serra","doi":"10.1002/anbr.202400097","DOIUrl":null,"url":null,"abstract":"<p>The native structure of tissues and organs is characterized by a hierarchical architecture, where various cell types and extracellular matrix components are closely interconnected. The precise organization of these entities is crucial for ensuring the proper functionality of tissues and organs. Therefore, engineering the spatial complexity of living systems is essential not only to mimic in vivo architecture but also to govern the microenvironments where embedded cells reside. Bioassembly is an innovative toolset for in vitro modeling and regenerative medicine. It enables the precise assembly and patterning of cells, biomaterials, and bioactive substances into 3D structures using automated and cell-friendly fabrication methods. In this review, the focus is centered on three contactless bioassembly approaches that are driven by sound, optical, and magnetic field. These technologies are thoroughly discussed, with a particular emphasis on their mechanism of action and their applications.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202400097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The native structure of tissues and organs is characterized by a hierarchical architecture, where various cell types and extracellular matrix components are closely interconnected. The precise organization of these entities is crucial for ensuring the proper functionality of tissues and organs. Therefore, engineering the spatial complexity of living systems is essential not only to mimic in vivo architecture but also to govern the microenvironments where embedded cells reside. Bioassembly is an innovative toolset for in vitro modeling and regenerative medicine. It enables the precise assembly and patterning of cells, biomaterials, and bioactive substances into 3D structures using automated and cell-friendly fabrication methods. In this review, the focus is centered on three contactless bioassembly approaches that are driven by sound, optical, and magnetic field. These technologies are thoroughly discussed, with a particular emphasis on their mechanism of action and their applications.

Abstract Image

Abstract Image

Abstract Image

先进的非接触式生物组装方法:利用声音,光学和磁场
组织和器官的天然结构具有层次结构的特点,其中各种细胞类型和细胞外基质成分紧密相连。这些实体的精确组织对于确保组织和器官的正常功能至关重要。因此,设计生命系统的空间复杂性不仅对模拟体内结构而且对控制嵌入细胞所在的微环境至关重要。Bioassembly是体外建模和再生医学的创新工具集。它能够使用自动化和细胞友好的制造方法将细胞,生物材料和生物活性物质精确组装和图案化到3D结构中。本文重点介绍了声、光、磁场驱动的三种非接触式生物组装方法。对这些技术进行了深入的讨论,特别强调了它们的作用机制和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信