Advances on Albumin-Based Carriers for Anticancer Drug Delivery

IF 4.4 Q2 ENGINEERING, BIOMEDICAL
Ruoli Zhou, Rongbin Zhong, Zhonghui Luo, Hua Wei, Cui-Yun Yu
{"title":"Advances on Albumin-Based Carriers for Anticancer Drug Delivery","authors":"Ruoli Zhou,&nbsp;Rongbin Zhong,&nbsp;Zhonghui Luo,&nbsp;Hua Wei,&nbsp;Cui-Yun Yu","doi":"10.1002/anbr.202500011","DOIUrl":null,"url":null,"abstract":"<p>Albumin is the most abundant protein in plasma, featuring a unique chemical structure and conformation that underpins its functions. Its excellent biocompatibility, nontoxicity and non-immunogenicity make it an ideal carrier for encapsulating therapeutic agents, particularly in controlled release applications for cancer treatment. Although existing reviews focus on albumin-based particulate delivery systems, there is a lack of comprehensive analysis from the perspective of using albumin's structural characteristics and binding sites for drug delivery. This review categorizes albumin's drug-loading modes based on its surface-active groups and internal binding sites, emphasizing drug-loading strategies and targeting mechanisms. It also details the preparation and modification methods for albumin nanoparticles, along with clinical performance evaluations. Finally, it addresses current challenges and proposes potential solutions. This review aims to provide valuable insights for developing advanced albumin-based anticancer drugs with enhanced therapeutic efficacy.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Albumin is the most abundant protein in plasma, featuring a unique chemical structure and conformation that underpins its functions. Its excellent biocompatibility, nontoxicity and non-immunogenicity make it an ideal carrier for encapsulating therapeutic agents, particularly in controlled release applications for cancer treatment. Although existing reviews focus on albumin-based particulate delivery systems, there is a lack of comprehensive analysis from the perspective of using albumin's structural characteristics and binding sites for drug delivery. This review categorizes albumin's drug-loading modes based on its surface-active groups and internal binding sites, emphasizing drug-loading strategies and targeting mechanisms. It also details the preparation and modification methods for albumin nanoparticles, along with clinical performance evaluations. Finally, it addresses current challenges and proposes potential solutions. This review aims to provide valuable insights for developing advanced albumin-based anticancer drugs with enhanced therapeutic efficacy.

Abstract Image

Abstract Image

Abstract Image

基于白蛋白的抗癌药物载体研究进展
白蛋白是血浆中最丰富的蛋白质,具有独特的化学结构和构象,支撑着它的功能。其优良的生物相容性、无毒性和非免疫原性使其成为包封治疗药物的理想载体,特别是在癌症治疗的控释应用中。虽然现有的综述主要集中在基于白蛋白的颗粒递送系统上,但缺乏从利用白蛋白的结构特征和结合位点进行药物递送的角度进行全面分析。本文根据白蛋白的表面活性基团和内部结合位点对其载药方式进行了分类,重点介绍了载药策略和靶向机制。它还详细介绍了白蛋白纳米颗粒的制备和修饰方法,以及临床性能评估。最后,阐述了当前的挑战并提出了潜在的解决方案。本文旨在为开发以白蛋白为基础的晚期抗癌药物提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信