Dual Actuator Wave-Like Navigator: An Untethered Soft Crawling Robot for Multisurface Locomotion

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Mathias Jensen, Magnus Malthe Sigsgaard Nielsen, Nicklas Nikolaj Grønvall, Jonathan Tirado, Jonas Jørgensen, Saravana Prashanth Murali Babu
{"title":"Dual Actuator Wave-Like Navigator: An Untethered Soft Crawling Robot for Multisurface Locomotion","authors":"Mathias Jensen,&nbsp;Magnus Malthe Sigsgaard Nielsen,&nbsp;Nicklas Nikolaj Grønvall,&nbsp;Jonathan Tirado,&nbsp;Jonas Jørgensen,&nbsp;Saravana Prashanth Murali Babu","doi":"10.1002/aisy.202500422","DOIUrl":null,"url":null,"abstract":"<p>Wave-based mechanisms inspired by traveling wave locomotion in animals have shown great potential use in robots to navigate unstructured environments. Herein, the dual actuator wave-like navigator (DAWN), a multisurface robot employing two actuated helical wave generators to produce continuous traveling waves on flexible link tracks enclosed in elastomer skins, is presented. These skins provide mechanical resilience, enhanced friction, and adaptability on uneven terrain. The robot demonstrates steering and controlled locomotion on flat surfaces, inclines, and declines. To characterize the robot, locomotion tests are performed on plywood, PMMA, and sand, achieving average linear speeds of 16.00, 15.76, and 1.63 mm s<sup>−1</sup>, respectively. A key innovation is cyclic pneumatic actuation of the skins with actuation frequencies of 0.5 and 0.9 Hz, improving locomotion performance on sand to 2.22 and 2.70 mm s<sup>−1</sup>. DAWN's capability to move on sand, grass, gravel, and wet soil is also demonstrated. Its modular design enables plug-and-play assembly of components including helical wave generators, flexible link tracks, and elastomer skins, allowing for easy maintenance, modification, and replacements. Potential applications include navigation in complex terrains for search and rescue, inspection, and environmental monitoring.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500422","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202500422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Wave-based mechanisms inspired by traveling wave locomotion in animals have shown great potential use in robots to navigate unstructured environments. Herein, the dual actuator wave-like navigator (DAWN), a multisurface robot employing two actuated helical wave generators to produce continuous traveling waves on flexible link tracks enclosed in elastomer skins, is presented. These skins provide mechanical resilience, enhanced friction, and adaptability on uneven terrain. The robot demonstrates steering and controlled locomotion on flat surfaces, inclines, and declines. To characterize the robot, locomotion tests are performed on plywood, PMMA, and sand, achieving average linear speeds of 16.00, 15.76, and 1.63 mm s−1, respectively. A key innovation is cyclic pneumatic actuation of the skins with actuation frequencies of 0.5 and 0.9 Hz, improving locomotion performance on sand to 2.22 and 2.70 mm s−1. DAWN's capability to move on sand, grass, gravel, and wet soil is also demonstrated. Its modular design enables plug-and-play assembly of components including helical wave generators, flexible link tracks, and elastomer skins, allowing for easy maintenance, modification, and replacements. Potential applications include navigation in complex terrains for search and rescue, inspection, and environmental monitoring.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

双致动器波状导航仪:用于多表面运动的无系绳软爬行机器人
受动物行波运动启发的基于波浪的机制在机器人导航非结构化环境中显示出巨大的潜力。本文提出了一种双致动器类波导航仪(DAWN),它是一种多表面机器人,利用两个致动螺旋波发生器在封闭在弹性体表皮中的柔性连杆轨道上产生连续行波。这些皮肤提供机械弹性,增强摩擦和适应不平坦的地形。该机器人演示了在平面、倾斜和下降上的转向和控制运动。为了表征机器人,在胶合板、PMMA和沙子上进行了运动测试,平均线速度分别为16.00、15.76和1.63 mm s - 1。一个关键的创新是皮的循环气动驱动,驱动频率为0.5和0.9 Hz,将沙子上的运动性能提高到2.22和2.70 mm s - 1。DAWN在沙子、草地、砾石和湿土上移动的能力也得到了证明。其模块化设计可实现即插即用组件组装,包括螺旋波发生器,柔性链接轨道和弹性体外壳,便于维护,修改和更换。潜在的应用包括导航在复杂的地形搜索和救援,检查和环境监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信