{"title":"Observations of Flare Induced Doppler Shifts in the Si iii 1206 Å Line","authors":"Luke H. Majury, Ryan O. Milligan","doi":"10.1007/s11207-025-02548-3","DOIUrl":null,"url":null,"abstract":"<div><p>Doppler shifts in chromospheric and transition-region lines during solar flares are often interpreted as chromospheric condensation or evaporation. However, alternative sources of Doppler-shifted emission have been suggested, such as filament eruptions, jets or chromospheric bubbles. We analyse high-cadence scans from SORCE/SOLSTICE, which provide one-minute resolution profiles of the transition-region Si <span>iii</span> (1206 Å, <span>\\(\\textrm{T} = 10^{4.6}\\,\\textrm{K}\\)</span>) line. 11 X-, M-, and C-class events observed during these scans with clear impulsive phase Si <span>iii</span> enhancements were identified. By subtracting a quiet-Sun profile and fitting Gaussian profiles to the Si <span>iii</span> line, measurements of flare-induced Doppler shifts were made. After correcting for a systematic trend in these shifts with solar longitude, two of the 11 events were found to exhibit a significant Doppler shift, one with a <span>\\(201.36\\pm 21.94\\;\\textrm{km\\,s}^{-1}\\)</span> redshift and the other with a <span>\\(-39.75\\pm 11.00\\;\\textrm{km\\,s}^{-1}\\)</span> blueshift. Intriguingly, SDO/AIA 304 Å and 1600 Å imaging revealed a bright eruption coincident with the event that exhibited a blueshift, suggesting the shift may have resulted from the eruption rather than evaporation alone. Our results highlight Si <span>iii</span> as a useful diagnostic of flaring dynamics at a temperature that has received limited attention to date. Future comparisons of these observations with radiative hydrodynamic simulations, along with new observations from state-of-the-art spectrometers such as SOLAR-C/EUVST and MUSE, should clarify the mechanisms behind the observed shifts in this study.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-025-02548-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02548-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Doppler shifts in chromospheric and transition-region lines during solar flares are often interpreted as chromospheric condensation or evaporation. However, alternative sources of Doppler-shifted emission have been suggested, such as filament eruptions, jets or chromospheric bubbles. We analyse high-cadence scans from SORCE/SOLSTICE, which provide one-minute resolution profiles of the transition-region Si iii (1206 Å, \(\textrm{T} = 10^{4.6}\,\textrm{K}\)) line. 11 X-, M-, and C-class events observed during these scans with clear impulsive phase Si iii enhancements were identified. By subtracting a quiet-Sun profile and fitting Gaussian profiles to the Si iii line, measurements of flare-induced Doppler shifts were made. After correcting for a systematic trend in these shifts with solar longitude, two of the 11 events were found to exhibit a significant Doppler shift, one with a \(201.36\pm 21.94\;\textrm{km\,s}^{-1}\) redshift and the other with a \(-39.75\pm 11.00\;\textrm{km\,s}^{-1}\) blueshift. Intriguingly, SDO/AIA 304 Å and 1600 Å imaging revealed a bright eruption coincident with the event that exhibited a blueshift, suggesting the shift may have resulted from the eruption rather than evaporation alone. Our results highlight Si iii as a useful diagnostic of flaring dynamics at a temperature that has received limited attention to date. Future comparisons of these observations with radiative hydrodynamic simulations, along with new observations from state-of-the-art spectrometers such as SOLAR-C/EUVST and MUSE, should clarify the mechanisms behind the observed shifts in this study.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.