{"title":"Exploring claudin proteins: from sequence motifs to their impact on tight junction-mediated signaling pathways","authors":"Lingling Bao, Siqi Yang, Wenhua Zhao, Yongchun Zuo","doi":"10.1007/s00726-025-03479-w","DOIUrl":null,"url":null,"abstract":"<div><p>Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins<b>.</b> This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-025-03479-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-025-03479-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins. This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.
期刊介绍:
Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology