Design of bimetallic single-atom catalysts and theoretical study of CO2 reduction reaction

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yang Liu, Zhao-Di Yang and Guiling Zhang
{"title":"Design of bimetallic single-atom catalysts and theoretical study of CO2 reduction reaction","authors":"Yang Liu, Zhao-Di Yang and Guiling Zhang","doi":"10.1039/D5NJ02459E","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic conversion of CO<small><sub>2</sub></small> represents a promising strategy toward achieving carbon neutrality, where single-atom catalysts (SACs) with atomically dispersed metal centers demonstrate exceptional potential for the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR). This work develops Co<small><sub><em>x</em></sub></small>Fe<small><sub>3−<em>x</em></sub></small>–O<small><sub>4</sub></small>–C<small><sub>4</sub></small>N SACs (<em>x</em> = 0–3) featuring tailored multi-metallic sites and systematically investigates their CO<small><sub>2</sub></small>RR pathways and competitive hydrogen evolution reaction (HER) pathway through density functional theory (DFT) calculations. Detailed analysis of key intermediates reveals that the Fe sites in Co<small><sub>1</sub></small>Fe<small><sub>2</sub></small>–O<small><sub>4</sub></small>–C<small><sub>4</sub></small>N SACs exhibit optimal performance for HCOOH production, achieving a remarkably low energy barrier of 0.51 eV at the rate-determining step. Comparative studies demonstrate that Fe incorporation effectively suppresses competitive HER at Co sites while simultaneously modulating the electronic structures and charge transfer ability, which optimizes intermediate adsorption configurations, particularly enhancing activity and selectivity toward HCOOH generation. The findings establish a fundamental framework for designing multi-metallic SACs with precisely engineered active sites and high selectivity for special high-value-added chemicals.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 37","pages":" 16113-16121"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02459e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic conversion of CO2 represents a promising strategy toward achieving carbon neutrality, where single-atom catalysts (SACs) with atomically dispersed metal centers demonstrate exceptional potential for the CO2 reduction reaction (CO2RR). This work develops CoxFe3−x–O4–C4N SACs (x = 0–3) featuring tailored multi-metallic sites and systematically investigates their CO2RR pathways and competitive hydrogen evolution reaction (HER) pathway through density functional theory (DFT) calculations. Detailed analysis of key intermediates reveals that the Fe sites in Co1Fe2–O4–C4N SACs exhibit optimal performance for HCOOH production, achieving a remarkably low energy barrier of 0.51 eV at the rate-determining step. Comparative studies demonstrate that Fe incorporation effectively suppresses competitive HER at Co sites while simultaneously modulating the electronic structures and charge transfer ability, which optimizes intermediate adsorption configurations, particularly enhancing activity and selectivity toward HCOOH generation. The findings establish a fundamental framework for designing multi-metallic SACs with precisely engineered active sites and high selectivity for special high-value-added chemicals.

Abstract Image

双金属单原子催化剂设计及CO2还原反应的理论研究
二氧化碳的电催化转化是实现碳中和的一种很有前途的策略,其中具有原子分散金属中心的单原子催化剂(SACs)在二氧化碳还原反应(CO2RR)中表现出非凡的潜力。本研究开发了具有定制多金属位点的CoxFe3−x - o4 - c4n SACs (x = 0-3),并通过密度泛函理论(DFT)计算系统地研究了它们的CO2RR途径和竞争性析氢反应(HER)途径。对关键中间体的详细分析表明,Co1Fe2-O4-C4N SACs中的Fe位点在HCOOH生产中表现出最佳性能,在速率决定步骤中实现了0.51 eV的极低能垒。对比研究表明,Fe的加入有效地抑制了Co位点上的竞争性HER,同时调节了电子结构和电荷转移能力,从而优化了中间吸附构型,特别是增强了生成HCOOH的活性和选择性。这些发现为设计具有精确工程活性位点和高选择性的特殊高附加值化学品的多金属SACs建立了基本框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信