Biofabrication of a bismuth vanadate/bacterial nanocellulose adsorbent: a photocatalytic mesoporous composite for efficient removal of a fluorochrome pollutant

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bendangtula Walling, Pranjal Bharali, D. Ramachandran, Kanagasabai Viswanathan, Nipu Dutta, Naorem Shanta Singh, Swapnali Hazarika, Rajiv K. Srivastava, Balamurali Mahalakshmi, Jeganathan Manivannan and Viphrezolie Sorhie
{"title":"Biofabrication of a bismuth vanadate/bacterial nanocellulose adsorbent: a photocatalytic mesoporous composite for efficient removal of a fluorochrome pollutant","authors":"Bendangtula Walling, Pranjal Bharali, D. Ramachandran, Kanagasabai Viswanathan, Nipu Dutta, Naorem Shanta Singh, Swapnali Hazarika, Rajiv K. Srivastava, Balamurali Mahalakshmi, Jeganathan Manivannan and Viphrezolie Sorhie","doi":"10.1039/D5NJ02109J","DOIUrl":null,"url":null,"abstract":"<p >The current work concentrated on a novel biofabrication method that employs bismuth vanadate (BiVO<small><sub>4</sub></small>) nanoparticles and bacterial nanocellulose (BNC) to develop a bionanocomposite. The developed bionanocomposite was evaluated for its prowess in adsorption and degradation using the acridine orange (AO) dye. Comprehensive textural analyses were performed using FTIR, XRD, XPS, BET, FESEM, EDX, TEM, and TGA. Results revealed a dense nanofibrous network with enhanced thermal stability up to 600 °C. The N<small><sub>2</sub></small> adsorption–desorption isotherm showed its mesoporous nature, exhibiting a type IV structure. Adsorption data for AO adhered well to the Langmuir adsorption isotherm and 2nd pseudo-order kinetics, while thermodynamic analysis revealed a spontaneous, endothermic adsorption process. Remarkably, the bionanocomposite demonstrated regeneration capacity for up to five cycles. The photocatalytic prowess of the bionanocomposite was evaluated for AO degradation under visible light. Results illustrated BNC's role as a support, establishing an interface with BiVO<small><sub>4</sub></small> to reduce electron–hole recombination and heighten catalyst photodegradation efficiency. Photoluminescence analysis further validated this interaction by confirming suppressed electron–hole recombination in the composite. Findings highlight the bionanocomposite's efficacy in both adsorption and photocatalysis. Furthermore, the cytotoxicity assessment of the bionanocomposite on hepatocyte cells verified its non-toxic nature. This study illuminates the potential of a designed bionanocomposite model, offering a cost-effective, operationally simple, highly efficient, and environmentally benign solution to address dye pollution challenges.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 37","pages":" 16235-16255"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02109j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current work concentrated on a novel biofabrication method that employs bismuth vanadate (BiVO4) nanoparticles and bacterial nanocellulose (BNC) to develop a bionanocomposite. The developed bionanocomposite was evaluated for its prowess in adsorption and degradation using the acridine orange (AO) dye. Comprehensive textural analyses were performed using FTIR, XRD, XPS, BET, FESEM, EDX, TEM, and TGA. Results revealed a dense nanofibrous network with enhanced thermal stability up to 600 °C. The N2 adsorption–desorption isotherm showed its mesoporous nature, exhibiting a type IV structure. Adsorption data for AO adhered well to the Langmuir adsorption isotherm and 2nd pseudo-order kinetics, while thermodynamic analysis revealed a spontaneous, endothermic adsorption process. Remarkably, the bionanocomposite demonstrated regeneration capacity for up to five cycles. The photocatalytic prowess of the bionanocomposite was evaluated for AO degradation under visible light. Results illustrated BNC's role as a support, establishing an interface with BiVO4 to reduce electron–hole recombination and heighten catalyst photodegradation efficiency. Photoluminescence analysis further validated this interaction by confirming suppressed electron–hole recombination in the composite. Findings highlight the bionanocomposite's efficacy in both adsorption and photocatalysis. Furthermore, the cytotoxicity assessment of the bionanocomposite on hepatocyte cells verified its non-toxic nature. This study illuminates the potential of a designed bionanocomposite model, offering a cost-effective, operationally simple, highly efficient, and environmentally benign solution to address dye pollution challenges.

Abstract Image

钒酸铋/细菌纳米纤维素吸附剂的生物制备:用于有效去除荧光染料污染物的光催化介孔复合材料
目前的工作集中在一种新的生物制造方法,即利用钒酸铋纳米颗粒和细菌纳米纤维素(BNC)来开发生物纳米复合材料。开发的生物纳米复合材料对吖啶橙(AO)染料的吸附和降解能力进行了评估。采用FTIR、XRD、XPS、BET、FESEM、EDX、TEM和TGA对样品进行了全面的结构分析。结果显示,致密的纳米纤维网络在高达600°C的温度下具有增强的热稳定性。N2吸附-解吸等温线表现为介孔性质,为ⅳ型结构。AO的吸附数据符合Langmuir吸附等温线和二级拟动力学,而热力学分析显示为自发吸热吸附过程。值得注意的是,这种生物纳米复合材料显示出高达5次循环的再生能力。在可见光下评价了生物纳米复合材料降解AO的光催化能力。结果表明,BNC作为载体,与BiVO4建立界面,减少了电子-空穴复合,提高了催化剂的光降解效率。光致发光分析通过证实复合材料中抑制的电子-空穴复合进一步验证了这种相互作用。研究结果强调了生物纳米复合材料在吸附和光催化方面的功效。此外,生物纳米复合材料对肝细胞的细胞毒性评估证实了其无毒性质。这项研究阐明了设计生物纳米复合材料模型的潜力,为解决染料污染挑战提供了一种成本效益高、操作简单、高效、环保的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信