19F solid-state nuclear magnetic resonance as a tool to study the bioaccumulation of per- and polyfluoroalkyl substances in murine tissue samples

IF 4.4 Q3 ENGINEERING, ENVIRONMENTAL
Rachel Neita, Sophie Kiefte, Haley Adams, Grace V. Mercer, Céline M. Schneider and Lindsay S. Cahill
{"title":"19F solid-state nuclear magnetic resonance as a tool to study the bioaccumulation of per- and polyfluoroalkyl substances in murine tissue samples","authors":"Rachel Neita, Sophie Kiefte, Haley Adams, Grace V. Mercer, Céline M. Schneider and Lindsay S. Cahill","doi":"10.1039/D5VA00220F","DOIUrl":null,"url":null,"abstract":"<p >Many per- and polyfluoroalkyl substances (PFAS) are known to be persistent in the environment and are associated with adverse health effects including kidney and liver disease and developmental toxicity. While PFAS are also known to have high bioaccumulation potential, whether these compounds can be detected in biological tissue using nuclear magnetic resonance (NMR) has not been established. In this study, we used <small><sup>19</sup></small>F solid-state magic angle spinning (MAS) NMR to investigate the accumulation of a legacy PFAS, perfluorooctanoic acid (PFOA), in murine tissue samples including the adult brain, intestine, kidney, liver, uterus, adipose tissue, placenta and fetal brain. Healthy pregnant (<em>n</em> = 4) and non-pregnant (<em>n</em> = 5) female CD-1 mice were exposed to 50 ppm of PFOA through their drinking water for 17 days. PFOA was detected above the limit of detection (10 μg g<small><sup>−1</sup></small>) in all of the liver samples (<em>n</em> = 9/9), 25% (<em>n</em> = 2/8) of the adipose tissue samples, 33.3% (<em>n</em> = 4/12) of the male placenta samples, and 16.7% (<em>n</em> = 2/12) of the female placenta samples. The detection of PFOA in adipose tissue challenges the current understanding about the behaviour of PFAS in the human body. These results demonstrate that <small><sup>19</sup></small>F solid-state MAS NMR is a promising tool for detection and quantification of PFAS in tissue samples and motivate further work to evaluate accumulation of unregulated, emerging PFAS that have different chain lengths and head groups.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 10","pages":" 1612-1621"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d5va00220f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d5va00220f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many per- and polyfluoroalkyl substances (PFAS) are known to be persistent in the environment and are associated with adverse health effects including kidney and liver disease and developmental toxicity. While PFAS are also known to have high bioaccumulation potential, whether these compounds can be detected in biological tissue using nuclear magnetic resonance (NMR) has not been established. In this study, we used 19F solid-state magic angle spinning (MAS) NMR to investigate the accumulation of a legacy PFAS, perfluorooctanoic acid (PFOA), in murine tissue samples including the adult brain, intestine, kidney, liver, uterus, adipose tissue, placenta and fetal brain. Healthy pregnant (n = 4) and non-pregnant (n = 5) female CD-1 mice were exposed to 50 ppm of PFOA through their drinking water for 17 days. PFOA was detected above the limit of detection (10 μg g−1) in all of the liver samples (n = 9/9), 25% (n = 2/8) of the adipose tissue samples, 33.3% (n = 4/12) of the male placenta samples, and 16.7% (n = 2/12) of the female placenta samples. The detection of PFOA in adipose tissue challenges the current understanding about the behaviour of PFAS in the human body. These results demonstrate that 19F solid-state MAS NMR is a promising tool for detection and quantification of PFAS in tissue samples and motivate further work to evaluate accumulation of unregulated, emerging PFAS that have different chain lengths and head groups.

Abstract Image

19F固态核磁共振作为研究全氟烷基和多氟烷基物质在小鼠组织样品中的生物积累的工具
已知许多全氟烷基和多氟烷基物质(PFAS)可在环境中持续存在,并与不利的健康影响有关,包括肾脏和肝脏疾病以及发育毒性。虽然已知PFAS也具有很高的生物蓄积潜力,但是否可以使用核磁共振(NMR)在生物组织中检测到这些化合物尚未确定。在这项研究中,我们使用19F固态幻角旋转(MAS)核磁共振研究了一种遗留的PFAS,全氟辛酸(PFOA)在小鼠组织样本中的积累,包括成人大脑、肠道、肾脏、肝脏、子宫、脂肪组织、胎盘和胎儿大脑。健康怀孕(n = 4)和未怀孕(n = 5)雌性CD-1小鼠通过饮用水暴露于50 ppm的全氟辛酸17天。肝脏(n = 9/9)、脂肪(n = 2/8)、男性胎盘(n = 4/12)、女性胎盘(n = 2/12)的PFOA检出均超过10 μg−1的检出限。脂肪组织中PFOA的检测挑战了目前对PFAS在人体内行为的理解。这些结果表明,19F固态MAS NMR是一种很有前途的工具,用于检测和定量组织样品中的PFAS,并激发了进一步的工作,以评估具有不同链长和头基的不受管制的新兴PFAS的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信