Antonija Ožegović, Aleksandra Šimanović, Irena Dokli, Patrick Davidson, Ivan Dozov, Jurica Novak, Anamarija Knežević and Andreja Lesac
{"title":"Temperature-induced helix inversion in naphthyl-based cholesteric liquid crystals","authors":"Antonija Ožegović, Aleksandra Šimanović, Irena Dokli, Patrick Davidson, Ivan Dozov, Jurica Novak, Anamarija Knežević and Andreja Lesac","doi":"10.1039/D5QM00456J","DOIUrl":null,"url":null,"abstract":"<p >Achieving precise control over macroscopic chirality in self-organized systems is a key challenge in the development of advanced supramolecular functional materials. Here, we report a novel class of liquid crystalline compounds bearing a single chiral center, which exhibit reversible, thermally-induced helix inversion in the cholesteric phase. The (<em>S</em>)-naphthyl-3-hydroxypropanoic moiety is identified as the critical structural fragment responsible for this rare behavior. Remarkably, the helix inversion can be transferred from the pure chiral compound to an achiral nematic host, at guest concentrations as low as 6%, preserving the characteristic transition from a high-temperature left-handed helix to a low-temperature right-handed one. This also enables precise tuning of the helix inversion temperature across an exceptionally broad range – from below room temperature up to 114 °C. Importantly, structural modifications to the alkyl ester moiety do not suppress helix inversion, allowing for targeted tuning of inversion temperature, host compatibility, and potential incorporation of additional stimuli-responsive functions. The combination of thermally-induced helix inversion, the ability to transfer this unique feature to an achiral host, and the wide temperature range over which this inversion can be adjusted makes these new chiral mesogens a versatile molecular platform for designing thermoresponsive chiral materials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 19","pages":" 2900-2908"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00456j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00456j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving precise control over macroscopic chirality in self-organized systems is a key challenge in the development of advanced supramolecular functional materials. Here, we report a novel class of liquid crystalline compounds bearing a single chiral center, which exhibit reversible, thermally-induced helix inversion in the cholesteric phase. The (S)-naphthyl-3-hydroxypropanoic moiety is identified as the critical structural fragment responsible for this rare behavior. Remarkably, the helix inversion can be transferred from the pure chiral compound to an achiral nematic host, at guest concentrations as low as 6%, preserving the characteristic transition from a high-temperature left-handed helix to a low-temperature right-handed one. This also enables precise tuning of the helix inversion temperature across an exceptionally broad range – from below room temperature up to 114 °C. Importantly, structural modifications to the alkyl ester moiety do not suppress helix inversion, allowing for targeted tuning of inversion temperature, host compatibility, and potential incorporation of additional stimuli-responsive functions. The combination of thermally-induced helix inversion, the ability to transfer this unique feature to an achiral host, and the wide temperature range over which this inversion can be adjusted makes these new chiral mesogens a versatile molecular platform for designing thermoresponsive chiral materials.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.