Chenyang Huang, Yuting Chen, Fugen Wu, Qi Zhang, Yun Teng, Xin Zhang, Huafeng Dong, Xiaozhu Xie and Zhongfei Mu
{"title":"Broadband far-red/near-infrared emission of Fe3+ and Mn4+ co-doped MgAl2O4 phosphors for plant lighting","authors":"Chenyang Huang, Yuting Chen, Fugen Wu, Qi Zhang, Yun Teng, Xin Zhang, Huafeng Dong, Xiaozhu Xie and Zhongfei Mu","doi":"10.1039/D5QM00548E","DOIUrl":null,"url":null,"abstract":"<p >Mn<small><sup>4+</sup></small>-activated phosphors are widely used in plant lighting due to their efficient far-red emission (600–760 nm). However, their narrow emission bandwidth limits their applications. To address this, we co-doped Fe<small><sup>3+</sup></small> with a broadband far-red/near-infrared (NIR) emission (650–900 nm) with Mn<small><sup>4+</sup></small> in a spinel-structured MgAl<small><sub>2</sub></small>O<small><sub>4</sub></small> host. This strategy synergistically combines the luminescence characteristics of both ions to achieve a broadened spectral output. Upon 285 nm ultraviolet excitation, the Fe<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> co-doped MgAl<small><sub>2</sub></small>O<small><sub>4</sub></small> system exhibits a dual-peak broadband emission spanning 600–900 nm, with emission maxima at 655 and 722 nm. Notably, the full width at half maximum (FWHM) reaches 132 nm, representing a 109% increase relative to the Mn<small><sup>4+</sup></small> singly doped sample (FWHM = 63 nm). The dual-peak broadband emission is highly consistent with the absorption bands of the two types of phytochrome (Pr and Pfr). This spectral matching enables bidirectional control of the phytochrome photoconversion cycle. This work establishes an innovative strategy for developing broadband far-red phosphors that dynamically regulate phytochrome activity to advance precision plant lighting.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 19","pages":" 2879-2888"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00548e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mn4+-activated phosphors are widely used in plant lighting due to their efficient far-red emission (600–760 nm). However, their narrow emission bandwidth limits their applications. To address this, we co-doped Fe3+ with a broadband far-red/near-infrared (NIR) emission (650–900 nm) with Mn4+ in a spinel-structured MgAl2O4 host. This strategy synergistically combines the luminescence characteristics of both ions to achieve a broadened spectral output. Upon 285 nm ultraviolet excitation, the Fe3+/Mn4+ co-doped MgAl2O4 system exhibits a dual-peak broadband emission spanning 600–900 nm, with emission maxima at 655 and 722 nm. Notably, the full width at half maximum (FWHM) reaches 132 nm, representing a 109% increase relative to the Mn4+ singly doped sample (FWHM = 63 nm). The dual-peak broadband emission is highly consistent with the absorption bands of the two types of phytochrome (Pr and Pfr). This spectral matching enables bidirectional control of the phytochrome photoconversion cycle. This work establishes an innovative strategy for developing broadband far-red phosphors that dynamically regulate phytochrome activity to advance precision plant lighting.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.