Holger Boche;Andrea Grigorescu;Rafael F. Schaefer;H. Vincent Poor
{"title":"Algorithmic Computability of the Capacity of Additive Colored Gaussian Noise Channels","authors":"Holger Boche;Andrea Grigorescu;Rafael F. Schaefer;H. Vincent Poor","doi":"10.1109/TIT.2025.3594999","DOIUrl":null,"url":null,"abstract":"Designing capacity-achieving coding schemes for the band-limited additive colored Gaussian noise (ACGN) channel has been and is still a challenge. In this paper, the capacity of the band-limited ACGN channel is studied from a fundamental algorithmic point of view by addressing the question of whether or not the capacity can be algorithmically computed. To this aim, the concept of Turing machines is used, which provides fundamental performance limits of digital computers. It is shown that there are band-limited ACGN channels having computable continuous spectral densities whose capacity are non-computable numbers. Moreover, it is demonstrated that for those channels, it is impossible to find computable sequences of asymptotically sharp upper bounds for their capacities. Furthermore, the implications of the non-computability of the ACGN channel capacity in information theory and coding are discussed, particularly regarding the impossibility of computing achievable rates in the finite blocklength regime and the challenges of finding universal algorithms that compute capacity-achieving power spectral densities for the ACGN channel.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 10","pages":"7419-7434"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11106443/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing capacity-achieving coding schemes for the band-limited additive colored Gaussian noise (ACGN) channel has been and is still a challenge. In this paper, the capacity of the band-limited ACGN channel is studied from a fundamental algorithmic point of view by addressing the question of whether or not the capacity can be algorithmically computed. To this aim, the concept of Turing machines is used, which provides fundamental performance limits of digital computers. It is shown that there are band-limited ACGN channels having computable continuous spectral densities whose capacity are non-computable numbers. Moreover, it is demonstrated that for those channels, it is impossible to find computable sequences of asymptotically sharp upper bounds for their capacities. Furthermore, the implications of the non-computability of the ACGN channel capacity in information theory and coding are discussed, particularly regarding the impossibility of computing achievable rates in the finite blocklength regime and the challenges of finding universal algorithms that compute capacity-achieving power spectral densities for the ACGN channel.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.