Coset Constructions of Constant Dimension Codes by Cosets of Optimal Ferrers Diagrams Rank Metric Codes

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dengming Xu;Yihui Song
{"title":"Coset Constructions of Constant Dimension Codes by Cosets of Optimal Ferrers Diagrams Rank Metric Codes","authors":"Dengming Xu;Yihui Song","doi":"10.1109/TIT.2025.3596103","DOIUrl":null,"url":null,"abstract":"Constant dimension codes (CDCs) have received a lot of attention due to their application in random network coding. One main problem with CDCs is to improve the lower bound of <inline-formula> <tex-math>$A_{q}(n,d,k)$ </tex-math></inline-formula> for given parameters <inline-formula> <tex-math>$n,d$ </tex-math></inline-formula> and <italic>k</i>, where <inline-formula> <tex-math>$A_{q}(n,d,k)$ </tex-math></inline-formula> denotes the maximum size of all <inline-formula> <tex-math>$(n,M,d,k)_{q}$ </tex-math></inline-formula> CDCs. The paper aims to construct CDCs by combining the coset and linkage construction. Precisely, we first combine the coset and linkage construction in different ways and then turn our attention to the coset construction. To enlarge the size of CDCs constructed from the coset construction, we are devoted to constructing lists of CDCs with fixed distance having size as large as possible by the cosets of optimal Ferrers diagram rank metric codes and the parallelisms in <inline-formula> <tex-math>${\\mathcal {G}}_{q}(n, k)$ </tex-math></inline-formula>. As applications, numerous CDCs with larger size than the previously best known codes are obtained, including <inline-formula> <tex-math>$A_{q}(18, 6,9), A_{q}(14, 6, 7), ~A_{q}(12, 4, 6), A_{q}(10, 4, 5),A_{q}(14, 4, 7),$ </tex-math></inline-formula> <inline-formula> <tex-math>$A_{q}(16, 4, 8)$ </tex-math></inline-formula> and <inline-formula> <tex-math>$A_{q}(n, 4,4)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$13\\leq n\\leq 16$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 10","pages":"7959-7975"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11113357/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Constant dimension codes (CDCs) have received a lot of attention due to their application in random network coding. One main problem with CDCs is to improve the lower bound of $A_{q}(n,d,k)$ for given parameters $n,d$ and k, where $A_{q}(n,d,k)$ denotes the maximum size of all $(n,M,d,k)_{q}$ CDCs. The paper aims to construct CDCs by combining the coset and linkage construction. Precisely, we first combine the coset and linkage construction in different ways and then turn our attention to the coset construction. To enlarge the size of CDCs constructed from the coset construction, we are devoted to constructing lists of CDCs with fixed distance having size as large as possible by the cosets of optimal Ferrers diagram rank metric codes and the parallelisms in ${\mathcal {G}}_{q}(n, k)$ . As applications, numerous CDCs with larger size than the previously best known codes are obtained, including $A_{q}(18, 6,9), A_{q}(14, 6, 7), ~A_{q}(12, 4, 6), A_{q}(10, 4, 5),A_{q}(14, 4, 7),$ $A_{q}(16, 4, 8)$ and $A_{q}(n, 4,4)$ for $13\leq n\leq 16$ .
用最优ferers图秩度量码的协集构造常维码的协集
恒定维码由于在随机网络编码中的应用而受到了广泛的关注。cdc的一个主要问题是对给定参数$n,d$和k改进$A_{q}(n,d,k)$的下界,其中$A_{q}(n,d,k)$表示所有$(n,M,d,k)_{q}$ cdc的最大大小。本文旨在将共集和联动构建相结合来构建cdc。确切地说,我们首先以不同的方式将协集和联动结构结合起来,然后将注意力转向协集结构。为了扩大由协集构造的cdc的规模,我们致力于通过${\mathcal {G}}_{q}(n, k)$中最优ferers图等级度量码的协集和并行性来构造尺寸尽可能大的具有固定距离的cdc列表。作为应用程序,获得了许多比以前最知名的代码更大的cdc,包括$13\leq n\leq 16$的$A_{q}(18, 6,9), A_{q}(14, 6, 7), ~A_{q}(12, 4, 6), A_{q}(10, 4, 5),A_{q}(14, 4, 7),$$A_{q}(16, 4, 8)$和$A_{q}(n, 4,4)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信