The Strauss exponent for some k-evolution equation in the class of Boussinesq equations

IF 1.2 3区 数学 Q1 MATHEMATICS
Marcello D'Abbicco, Antonio Lagioia
{"title":"The Strauss exponent for some k-evolution equation in the class of Boussinesq equations","authors":"Marcello D'Abbicco,&nbsp;Antonio Lagioia","doi":"10.1016/j.jmaa.2025.130077","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence of global small data solutions to the evolution equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>v</mi><mo>+</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>=</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>A</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> homogeneous of order <em>k</em>, and <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> or it is a more general power nonlinearity. We prove our result for <span><math><mi>α</mi><mo>&gt;</mo><mi>γ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>, where <em>γ</em> is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span>. We also consider the damped case, obtained adding <span><math><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130077"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008583","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the existence of global small data solutions to the evolution equation{vtt+Avtt+Av+A2v=Af(v),t0,xRn,v(0,x)=v0(x),vt(0,x)=v1(x), where A=F1(a(ξ)2) with a(ξ) homogeneous of order k, and f(v)=|v|α or it is a more general power nonlinearity. We prove our result for α>γ(r), where γ is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of a(ξ). We also consider the damped case, obtained adding +Avt to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.
Boussinesq方程中某些k-演化方程的Strauss指数
本文证明了演化方程{vtt+Avtt+Av+A2v=Af(v),t≥0,x∈Rn,v(0,x)=v0(x),vt(0,x)=v1(x)的整体小数据解的存在性,其中A=F−1(A (ξ)2),且(ξ)为k阶齐次,且F (v)=|v|α或它是一个更一般的幂非线性。我们证明了α>;γ(r)的结果,其中γ是非线性方程的Strauss指数,r是a(ξ)的Hessian的秩。我们还考虑了阻尼情况,在方程的左边加上+Avt。我们表明,与色散相比,耗散的影响是非常微弱的,然而,它足以将存在指数降低到一个较小的、修正的施特劳斯指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信