Optimized pervious alkali-activated slag concrete for heavy metal adsorption and ecological risk reduction in LID applications

IF 4.9 Q2 ENGINEERING, ENVIRONMENTAL
Zahra Ahmadi , Shahrokh Soltaninia , Kiachehr Behfarnia , Milad Nimafar , Sara Ahmadi
{"title":"Optimized pervious alkali-activated slag concrete for heavy metal adsorption and ecological risk reduction in LID applications","authors":"Zahra Ahmadi ,&nbsp;Shahrokh Soltaninia ,&nbsp;Kiachehr Behfarnia ,&nbsp;Milad Nimafar ,&nbsp;Sara Ahmadi","doi":"10.1016/j.cesys.2025.100335","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development and optimization of a multifunctional pervious alkali-activated slag (PAAS) concrete incorporating phosphoric acid–activated almond shell carbon and natural zeolite for sustainable stormwater management. Designed to combine mechanical strength, permeability, and heavy metal removal, the material applies circular economy principles by integrating agricultural and industrial by-products. Experimental evaluations demonstrated a compressive strength of 22.6 MPa, permeability of 0.95 cm/s, and heavy metal removal efficiencies exceeding 85 % for copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). The Slime Mould Algorithm (SMA) was employed to optimize the mix design across multiple performance objectives. A Life Cycle Assessment (LCA) was conducted using ReCiPe 2016 Midpoint (H) within the ISO 14040/14044 framework, revealing a substantial reduction in global warming potential compared to conventional OPC-based mixes. The integrated system exhibited robust structural, hydraulic, and environmental performance, confirming its applicability for real-world stormwater applications. The proposed PAAS concrete offers a novel, waste-derived solution aligned with Low-Impact Development principles, promoting multifunctionality and sustainability in urban water infrastructure.</div></div>","PeriodicalId":34616,"journal":{"name":"Cleaner Environmental Systems","volume":"19 ","pages":"Article 100335"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666789425000819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development and optimization of a multifunctional pervious alkali-activated slag (PAAS) concrete incorporating phosphoric acid–activated almond shell carbon and natural zeolite for sustainable stormwater management. Designed to combine mechanical strength, permeability, and heavy metal removal, the material applies circular economy principles by integrating agricultural and industrial by-products. Experimental evaluations demonstrated a compressive strength of 22.6 MPa, permeability of 0.95 cm/s, and heavy metal removal efficiencies exceeding 85 % for copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). The Slime Mould Algorithm (SMA) was employed to optimize the mix design across multiple performance objectives. A Life Cycle Assessment (LCA) was conducted using ReCiPe 2016 Midpoint (H) within the ISO 14040/14044 framework, revealing a substantial reduction in global warming potential compared to conventional OPC-based mixes. The integrated system exhibited robust structural, hydraulic, and environmental performance, confirming its applicability for real-world stormwater applications. The proposed PAAS concrete offers a novel, waste-derived solution aligned with Low-Impact Development principles, promoting multifunctionality and sustainability in urban water infrastructure.

Abstract Image

碱活化矿渣混凝土对重金属吸附及生态风险的优化研究
本研究提出了一种含有磷酸活化杏仁壳碳和天然沸石的多功能透水碱活化渣(PAAS)混凝土的开发和优化,用于可持续的雨水管理。该材料旨在结合机械强度、渗透性和重金属去除,通过整合农业和工业副产品,应用循环经济原则。实验评估表明,抗压强度为22.6 MPa,渗透率为0.95 cm/s,对铜(Cu)、铅(Pb)、铬(Cr)和锌(Zn)的重金属去除效率超过85%。采用黏菌算法(SMA)跨多个性能目标对混合料进行优化设计。在ISO 14040/14044框架下,使用ReCiPe 2016 Midpoint (H)进行了生命周期评估(LCA),发现与传统的基于opc的混合物相比,全球变暖潜能值大幅降低。该集成系统具有坚固的结构、水力和环保性能,证实了其在实际雨洪应用中的适用性。拟议的PAAS混凝土提供了一种新颖的、由废物产生的解决方案,符合低影响发展原则,促进了城市水利基础设施的多功能和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Environmental Systems
Cleaner Environmental Systems Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
0.00%
发文量
32
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信