{"title":"Partite saturation number of cycles","authors":"Yiduo Xu , Zhen He , Mei Lu","doi":"10.1016/j.disc.2025.114802","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>H</em> is said to be <em>F</em>-saturated relative to <em>G</em>, if <em>H</em> does not contain any copy of <em>F</em>, but the addition of any edge <em>e</em> in <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>E</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> would create a copy of <em>F</em>. The minimum size of an <em>F</em>-saturated graph relative to <em>G</em> is denoted by <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be the complete <em>k</em>-partite graph containing <em>n</em> vertices in each part and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> be the cycle of length <em>ℓ</em>. In this paper we give an asymptotically tight bound of <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for all <span><math><mi>ℓ</mi><mo>≥</mo><mn>4</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> except <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. Moreover, we determine the exact value of <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>></mo><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mn>5</mn><mo>≥</mo><mi>ℓ</mi><mo>></mo><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114802"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A graph H is said to be F-saturated relative to G, if H does not contain any copy of F, but the addition of any edge e in would create a copy of F. The minimum size of an F-saturated graph relative to G is denoted by . Let be the complete k-partite graph containing n vertices in each part and be the cycle of length ℓ. In this paper we give an asymptotically tight bound of for all except . Moreover, we determine the exact value of for and and .
如果H不包含F的任何副本,则图H相对于G是F饱和的,但在e (G)\ e (H)中添加任何边e将创建F的副本。相对于G的F饱和图的最小大小表示为sat(G,F)。设Kkn为每部分包含n个顶点的完备k部图,C =长度为r的循环。本文给出了除(r,k)=(4,4)外,所有r≥4,k≥2的情况下sat(Kkn,C)的渐近紧界。此外,我们确定了当k>; r =4和5≥l>;k≥3和(l>k)=(6,2)时sat(Kkn,C)的精确值。
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.