{"title":"Investigating the impact of the Covid-19 pandemic on stock markets volatility in USA and Europe","authors":"Mohamed Chikhi , François Benhmad","doi":"10.1016/j.najef.2025.102540","DOIUrl":null,"url":null,"abstract":"<div><div>Financial data exhibit distinctive characteristics known as stylized facts including volatility clustering, long memory, the leverage effect, and risk premium.</div><div>In this paper, we introduce a innovative volatility model (ARFIMA-HYAPGARCH-M) designed to effectively capture these features in both the S&P 500 and the European STOXX600 indices, before and during the Covid-19 pandemic.</div><div>Empirical findings reveal a significant surge in return volatility across both U.S. and European stock markets during the pandemic. Moreover, the data exhibit dual long memory properties in both the mean and variance of returns, along with an evidence of asymmetry and the leverage effect. Furthermore, the results show that risk premiums increased during the Covid period, confirming that investors demand higher compensation during periods of “bad” volatility compared to periods of “good” volatility.</div><div>As such, the ARFIMA-HYAPGARCH-M volatility model provides a valuable tool for improved risk assessment, enabling investors and portfolio managers to make more informed decisions. Additionally, the model can enhance the performance of hedging strategies by accurately capturing volatility dynamics.</div></div>","PeriodicalId":47831,"journal":{"name":"North American Journal of Economics and Finance","volume":"81 ","pages":"Article 102540"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Journal of Economics and Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1062940825001809","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Financial data exhibit distinctive characteristics known as stylized facts including volatility clustering, long memory, the leverage effect, and risk premium.
In this paper, we introduce a innovative volatility model (ARFIMA-HYAPGARCH-M) designed to effectively capture these features in both the S&P 500 and the European STOXX600 indices, before and during the Covid-19 pandemic.
Empirical findings reveal a significant surge in return volatility across both U.S. and European stock markets during the pandemic. Moreover, the data exhibit dual long memory properties in both the mean and variance of returns, along with an evidence of asymmetry and the leverage effect. Furthermore, the results show that risk premiums increased during the Covid period, confirming that investors demand higher compensation during periods of “bad” volatility compared to periods of “good” volatility.
As such, the ARFIMA-HYAPGARCH-M volatility model provides a valuable tool for improved risk assessment, enabling investors and portfolio managers to make more informed decisions. Additionally, the model can enhance the performance of hedging strategies by accurately capturing volatility dynamics.
期刊介绍:
The focus of the North-American Journal of Economics and Finance is on the economics of integration of goods, services, financial markets, at both regional and global levels with the role of economic policy in that process playing an important role. Both theoretical and empirical papers are welcome. Empirical and policy-related papers that rely on data and the experiences of countries outside North America are also welcome. Papers should offer concrete lessons about the ongoing process of globalization, or policy implications about how governments, domestic or international institutions, can improve the coordination of their activities. Empirical analysis should be capable of replication. Authors of accepted papers will be encouraged to supply data and computer programs.