Engineering Cu(OH)₂-AgNP@MWCNT nanocomposite by systematically layering onto a glassy carbon substrate and application as an electrochemical sensor for the analysis of antidiabetic agent metformin
IF 5.1 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"Engineering Cu(OH)₂-AgNP@MWCNT nanocomposite by systematically layering onto a glassy carbon substrate and application as an electrochemical sensor for the analysis of antidiabetic agent metformin","authors":"Abdollah Yari, Shokooh Bahrami","doi":"10.1016/j.diamond.2025.112867","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel electrode was engineered by systematically layering a Cu(OH)₂-AgNP@MWCNT nanocomposite onto a glassy carbon substrate. The Cu(OH)<sub>2</sub>-AgNP@MWCNT electrode is a sensitive electrochemical sensor designed for the selective detection of metformin, a drug approved by the FDA, primarily used for managing high blood sugar levels in individuals with type 2 diabetes. It is applicable in both clinical and pharmaceutical environments. The characterization of the components was performed utilizing Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). All electrochemical assessments were conducted utilizing cyclic voltammetry (CV), electrochemical impedance spectrometry (EIS), and differential pulse voltammetry (DPV). The electroactive surface area (ECSA) of the working electrode was determined, measuring 0.574 cm<sup>2</sup> compared to just 0.127 cm<sup>2</sup> for the unmodified electrode, suggesting greater efficiency and enhanced performance. The sensor exhibited two linear responses for metformin concentrations ranging from 0.02 to 2.0 μM and 2.0 to 100 μM, with limits of detections (LODs) established at 0.014 and 1.52 μM, respectively, and was successfully applied to the determination of metformin in real samples, yielding satisfactory results. The newly developed electrode's performance was evaluated in comparison to the HPLC method using a statistical F-test (<em>P</em> = 0.01). The findings demonstrated that the recovery rates from both methods were comparable and highlighted that the electrode's precision in response actually provides better accuracy than the HPLC technique for analyzing metformin in samples.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112867"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525009240","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel electrode was engineered by systematically layering a Cu(OH)₂-AgNP@MWCNT nanocomposite onto a glassy carbon substrate. The Cu(OH)2-AgNP@MWCNT electrode is a sensitive electrochemical sensor designed for the selective detection of metformin, a drug approved by the FDA, primarily used for managing high blood sugar levels in individuals with type 2 diabetes. It is applicable in both clinical and pharmaceutical environments. The characterization of the components was performed utilizing Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). All electrochemical assessments were conducted utilizing cyclic voltammetry (CV), electrochemical impedance spectrometry (EIS), and differential pulse voltammetry (DPV). The electroactive surface area (ECSA) of the working electrode was determined, measuring 0.574 cm2 compared to just 0.127 cm2 for the unmodified electrode, suggesting greater efficiency and enhanced performance. The sensor exhibited two linear responses for metformin concentrations ranging from 0.02 to 2.0 μM and 2.0 to 100 μM, with limits of detections (LODs) established at 0.014 and 1.52 μM, respectively, and was successfully applied to the determination of metformin in real samples, yielding satisfactory results. The newly developed electrode's performance was evaluated in comparison to the HPLC method using a statistical F-test (P = 0.01). The findings demonstrated that the recovery rates from both methods were comparable and highlighted that the electrode's precision in response actually provides better accuracy than the HPLC technique for analyzing metformin in samples.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.