Efficient-ecological-function analyses and multi-objective optimizations for generalized irreversible Carnot heat pumps

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Yiwen Su , Lingen Chen , Yanlin Ge , Shuangshuang Shi , Huijun Feng
{"title":"Efficient-ecological-function analyses and multi-objective optimizations for generalized irreversible Carnot heat pumps","authors":"Yiwen Su ,&nbsp;Lingen Chen ,&nbsp;Yanlin Ge ,&nbsp;Shuangshuang Shi ,&nbsp;Huijun Feng","doi":"10.1016/j.physa.2025.130979","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies proposed exergy-based efficient-ecological-function (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>) as a new cycle performance index. In this study, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> is introduced into a generalized irreversible Carnot heat-pump (CHP) cycle with heat-leak rate (<span><math><mi>q</mi></math></span>), heat-transfer loss and internal-irreversibility-factor (<span><math><mi>Φ</mi></math></span>). Cycle performances working under the maximum coefficient-of-performance (<span><math><mi>φ</mi></math></span>), maximum <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> and maximum ecological-function (<span><math><mi>E</mi></math></span>) conditions are compared firstly. Then, single-, dual-, triple-, and quadruple-objective optimizations for the irreversible CHPs are performed with <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>, <span><math><mi>φ</mi></math></span>, heating load (<span><math><mi>π</mi></math></span>) and <span><math><mi>E</mi></math></span> as well as their different combinations as optimization objectives, and working-fluid temperature-ratio (<span><math><mi>x</mi></math></span>) as optimization variable, by utilizing NSGA-II algorithm. Pareto-frontiers (PFs) under different objective combinations are obtained. Finally, the PF value is selected by using three decision-making-methods (DMMs): TOPSIS, LINMAP, and Shannon entropy. With the same objective function combination, the deviation indexes (<span><math><mrow><mi>D</mi><mi>s</mi></mrow></math></span>) of three DMMs are compared and the optimal scheme is selected according to the smallest <span><math><mi>D</mi></math></span>. The results for endoreverisble CHP case are also provided. The findings show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> places greater emphasis on the trade-off among <span><math><mi>φ</mi></math></span>, <span><math><mi>π</mi></math></span>, exergy-output-rate, and entropy-generation-rate. Heat-leak-rate transforms curve of <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>−</mo><mi>φ</mi></mrow></math></span> from parabolic to loop-shaped. The curve of <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub><mo>−</mo><mi>π</mi></mrow></math></span> is parabolic shape, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> decreases with increases of <span><math><mi>q</mi></math></span> and <span><math><mi>Φ</mi></math></span>. In practical heat-pump design, it is necessary to choose a designing point with higher <span><math><mi>φ</mi></math></span> and <span><math><mi>π</mi></math></span> in order to improve performance. On the PF, each point represents an optimal equilibrium-state achieved by objective function. For four-objective optimization, the optimal <span><math><mi>x</mi></math></span> (<span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>opt</mi></mrow></msub></math></span>) for the generalized irreversible CHP cycle ranges between 0.768 and 0.866, while the <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>opt</mi></mrow></msub></math></span> of endoreversible CHP cycle is between 0.765 and 0.866, which mean the optimal selecting ranges of working-fluid temperature-ratio for the two CHP cycle models. The important contributions herein are introducing <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> into generalized irreversible CHP and performing multi-objective optimizations with 15 objective combinations considering four performance indicators.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"679 ","pages":"Article 130979"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125006314","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies proposed exergy-based efficient-ecological-function (Eφ) as a new cycle performance index. In this study, Eφ is introduced into a generalized irreversible Carnot heat-pump (CHP) cycle with heat-leak rate (q), heat-transfer loss and internal-irreversibility-factor (Φ). Cycle performances working under the maximum coefficient-of-performance (φ), maximum Eφ and maximum ecological-function (E) conditions are compared firstly. Then, single-, dual-, triple-, and quadruple-objective optimizations for the irreversible CHPs are performed with Eφ, φ, heating load (π) and E as well as their different combinations as optimization objectives, and working-fluid temperature-ratio (x) as optimization variable, by utilizing NSGA-II algorithm. Pareto-frontiers (PFs) under different objective combinations are obtained. Finally, the PF value is selected by using three decision-making-methods (DMMs): TOPSIS, LINMAP, and Shannon entropy. With the same objective function combination, the deviation indexes (Ds) of three DMMs are compared and the optimal scheme is selected according to the smallest D. The results for endoreverisble CHP case are also provided. The findings show that Eφ places greater emphasis on the trade-off among φ, π, exergy-output-rate, and entropy-generation-rate. Heat-leak-rate transforms curve of Eφφ from parabolic to loop-shaped. The curve of Eφπ is parabolic shape, Eφ decreases with increases of q and Φ. In practical heat-pump design, it is necessary to choose a designing point with higher φ and π in order to improve performance. On the PF, each point represents an optimal equilibrium-state achieved by objective function. For four-objective optimization, the optimal x (xopt) for the generalized irreversible CHP cycle ranges between 0.768 and 0.866, while the xopt of endoreversible CHP cycle is between 0.765 and 0.866, which mean the optimal selecting ranges of working-fluid temperature-ratio for the two CHP cycle models. The important contributions herein are introducing Eφ into generalized irreversible CHP and performing multi-objective optimizations with 15 objective combinations considering four performance indicators.
广义不可逆卡诺热泵的高效生态功能分析与多目标优化
以往的研究提出了基于有效生态功能(Eφ)作为新的循环性能指标。在本研究中,将Eφ引入到广义不可逆卡诺热泵(CHP)循环中,该循环具有热泄漏率(q)、传热损失和内部不可逆因子(Φ)。首先比较了最大性能系数(φ)、最大Eφ和最大生态功能(E)条件下的循环性能。然后,以Eφ、φ、热负荷(π)和E及其不同组合为优化目标,以工液温度比(x)为优化变量,利用NSGA-II算法对不可逆热电联产系统进行单目标、双目标、三目标和四目标优化。得到了不同目标组合下的帕累托边界。最后,利用TOPSIS、LINMAP和Shannon熵三种决策方法(dmm)选择PF值。在相同的目标函数组合下,比较了三种dmm的偏差指数(Ds),并根据最小的d选择了最优方案,给出了内可逆热电联产情况下的结果。结果表明,Eφ更强调φ、π、能产出率和熵产率之间的权衡关系。热漏率Eφ−φ曲线由抛物线型转变为环型。Eφ−π的曲线呈抛物线形,随着q和Φ的增大,Eφ减小。在实际的热泵设计中,为了提高性能,有必要选择φ、π较大的设计点。在PF上,每个点代表一个由目标函数实现的最优平衡状态。对于四目标优化,广义不可逆热电联产循环的最优x (xopt)在0.768 ~ 0.866之间,内可逆热电联产循环的最优x (xopt)在0.765 ~ 0.866之间,即两种热电联产循环模型的工作液温度比的最优选择范围。本文的重要贡献是将Eφ引入到广义不可逆热电联产中,并考虑4个性能指标进行了15个目标组合的多目标优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信