Analysis of leakage characteristics and leakage point diameter prediction in supercritical CO2 pipeline

IF 5.5 0 ENERGY & FUELS
Zheyuan Liu , Jiming He , Kang Li , Shi Shen , Huiyong Liang , Xin Lv , Zaixing Liu
{"title":"Analysis of leakage characteristics and leakage point diameter prediction in supercritical CO2 pipeline","authors":"Zheyuan Liu ,&nbsp;Jiming He ,&nbsp;Kang Li ,&nbsp;Shi Shen ,&nbsp;Huiyong Liang ,&nbsp;Xin Lv ,&nbsp;Zaixing Liu","doi":"10.1016/j.jgsce.2025.205780","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates supercritical CO<sub>2</sub> pipeline leakage dynamics using an integrated experimental platform. Real-time multi-sensor monitoring and high-speed photography reveal continuous phase transitions during leakage, with pressure and temperature exhibiting three distinct stages: stable phase, rapid decline phase, and slow stabilization phase. The Joule-Thomson effect dominates temperature variations, with cooling intensity scaling proportionally to flow velocity. The leakage orifice size significantly influences leakage dynamics: orifices lead to exponentially increasing pressure drops. A relationship between orifice diameter (D) and pressure drop (△P) is established. Jet development is categorized into three stages—slow growth, rapid expansion, and stabilization. Leakage orifice significantly affects jet outlet velocity; at an orifice of 1 mm, velocity changes from 6 m/s to 20 m/s in a short time, and larger orifices exacerbate this change. Variations in leakage orifice diameter exert a more pronounced influence on the jet expansion angle (<em>θ</em><sub><em>c</em></sub>). When the orifice diameter increases from 0.5 mm to 3 mm, <em>θ</em><sub><em>c</em></sub> rises from 16.365° to 40.965°. In contrast, the core contraction angle (<em>θ</em><sub><em>d</em></sub>) demonstrates higher sensitivity to pressure fluctuations: as pressure increases from 8.7 MPa to 9.31 MPa, <em>θ</em><sub><em>d</em></sub> increases from 4.844° to 8.615°. These findings provide critical data support for safety design, risk assessment, and emergency response strategies of supercritical CO<sub>2</sub> pipelines.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205780"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates supercritical CO2 pipeline leakage dynamics using an integrated experimental platform. Real-time multi-sensor monitoring and high-speed photography reveal continuous phase transitions during leakage, with pressure and temperature exhibiting three distinct stages: stable phase, rapid decline phase, and slow stabilization phase. The Joule-Thomson effect dominates temperature variations, with cooling intensity scaling proportionally to flow velocity. The leakage orifice size significantly influences leakage dynamics: orifices lead to exponentially increasing pressure drops. A relationship between orifice diameter (D) and pressure drop (△P) is established. Jet development is categorized into three stages—slow growth, rapid expansion, and stabilization. Leakage orifice significantly affects jet outlet velocity; at an orifice of 1 mm, velocity changes from 6 m/s to 20 m/s in a short time, and larger orifices exacerbate this change. Variations in leakage orifice diameter exert a more pronounced influence on the jet expansion angle (θc). When the orifice diameter increases from 0.5 mm to 3 mm, θc rises from 16.365° to 40.965°. In contrast, the core contraction angle (θd) demonstrates higher sensitivity to pressure fluctuations: as pressure increases from 8.7 MPa to 9.31 MPa, θd increases from 4.844° to 8.615°. These findings provide critical data support for safety design, risk assessment, and emergency response strategies of supercritical CO2 pipelines.
超临界CO2管道泄漏特性分析及泄漏点直径预测
本研究利用综合实验平台系统地研究了超临界CO2管道泄漏动力学。实时多传感器监测和高速摄影显示泄漏过程中连续的相变,压力和温度表现出三个不同的阶段:稳定阶段、快速下降阶段和缓慢稳定阶段。焦耳-汤姆逊效应主导温度变化,冷却强度与流速成正比。泄漏孔的尺寸对泄漏动力学有显著影响,导致压降呈指数级增长。建立了孔口直径(D)与压降(△P)的关系。喷气机的发展可分为三个阶段:缓慢增长、快速扩张和稳定。泄漏孔对射流出口速度影响显著;孔径为1 mm时,流速在短时间内从6 m/s变化到20 m/s,较大的孔径加剧了这种变化。泄漏孔直径的变化对射流膨胀角(θc)的影响更为显著。当节流孔直径从0.5 mm增大到3 mm时,θc从16.365°增大到40.965°。相反,岩心收缩角(θd)对压力波动表现出更高的敏感性:当压力从8.7 MPa增加到9.31 MPa时,θd从4.844°增加到8.615°。这些发现为超临界CO2管道的安全设计、风险评估和应急响应策略提供了重要的数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信