Application of shrinking core and soft computing models (ANFIS and ANN) for the leaching of copper (II) from artificially contaminated soil

Banza Jean Claude, Linda L. Sibali, Vhahangwele Masindi
{"title":"Application of shrinking core and soft computing models (ANFIS and ANN) for the leaching of copper (II) from artificially contaminated soil","authors":"Banza Jean Claude,&nbsp;Linda L. Sibali,&nbsp;Vhahangwele Masindi","doi":"10.1016/j.clce.2025.100208","DOIUrl":null,"url":null,"abstract":"<div><div>This leaching experiment optimises copper (II) leaching using sulfuric acid by integrating the shrinking core kinetic model with machine learning techniques, adaptive neuro-fuzzy inference systems (ANFIS), and artificial neural networks (ANN), providing a hybrid computational framework that significantly enhances predictive accuracy and leaching efficiency compared to conventional empirical approaches. The factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, were investigated for the removal of copper (II). Experimental and computational analyses revealed that leaching efficiency is governed by diffusion through insoluble sulfate/oxide layers, with agitation speed (reducing boundary layers) and acid concentration (enhancing H⁺ access) as key drivers. Under optimal conditions (pH 5.96, 0.88 M H₂SO₄, 274 rpm, 12.5 g/200 mL solid-liquid ratio), ANFIS predicted 99.8 % Cu(II) recovery, validated experimentally. Kinetic analysis confirmed product-layer diffusion control (R² &gt; 0.99), supported by a low activation energy (17.96 kJ/mol) and rate suppression at high pH/solid ratios. The ANN (10 hidden layers, 4 inputs) outperformed ANFIS, achieving superior predictive accuracy (R² = 0.995 vs. 0.986) and lower error (RMSE: 0.061 vs. 0.129). Among the performance metrics, R² is the most critical, indicating that both models explain &gt;98.6 % of variance in leaching behaviour well above the acceptable threshold (R² &gt; 0.9) for reliable industrial prediction. The exceptionally low RMSE values (&lt;0.13) further confirm minimal deviation between experimental and predicted results. This hybrid framework bridges mechanistic insight with AI-driven optimisation, offering a 15–20 % efficiency gain over conventional methods while diagnosing rate-limiting steps for scalable applications.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"12 ","pages":"Article 100208"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This leaching experiment optimises copper (II) leaching using sulfuric acid by integrating the shrinking core kinetic model with machine learning techniques, adaptive neuro-fuzzy inference systems (ANFIS), and artificial neural networks (ANN), providing a hybrid computational framework that significantly enhances predictive accuracy and leaching efficiency compared to conventional empirical approaches. The factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, were investigated for the removal of copper (II). Experimental and computational analyses revealed that leaching efficiency is governed by diffusion through insoluble sulfate/oxide layers, with agitation speed (reducing boundary layers) and acid concentration (enhancing H⁺ access) as key drivers. Under optimal conditions (pH 5.96, 0.88 M H₂SO₄, 274 rpm, 12.5 g/200 mL solid-liquid ratio), ANFIS predicted 99.8 % Cu(II) recovery, validated experimentally. Kinetic analysis confirmed product-layer diffusion control (R² > 0.99), supported by a low activation energy (17.96 kJ/mol) and rate suppression at high pH/solid ratios. The ANN (10 hidden layers, 4 inputs) outperformed ANFIS, achieving superior predictive accuracy (R² = 0.995 vs. 0.986) and lower error (RMSE: 0.061 vs. 0.129). Among the performance metrics, R² is the most critical, indicating that both models explain >98.6 % of variance in leaching behaviour well above the acceptable threshold (R² > 0.9) for reliable industrial prediction. The exceptionally low RMSE values (<0.13) further confirm minimal deviation between experimental and predicted results. This hybrid framework bridges mechanistic insight with AI-driven optimisation, offering a 15–20 % efficiency gain over conventional methods while diagnosing rate-limiting steps for scalable applications.

Abstract Image

收缩核和软计算模型(ANFIS和ANN)在人工污染土壤中铜(II)浸出中的应用
该浸出实验通过将收缩核动力学模型与机器学习技术、自适应神经模糊推理系统(ANFIS)和人工神经网络(ANN)相结合,优化了硫酸铜(II)浸出,提供了一个混合计算框架,与传统的经验方法相比,显著提高了预测精度和浸出效率。考察了浸出过程中酸浓度、浸出时间、温度、土液比、搅拌速度等因素对铜(II)的去除效果。实验和计算分析表明,H +的浸出效率受不溶性硫酸盐/氧化物层的扩散控制,搅拌速度(减少边界层)和酸浓度(增强H +的获取)是关键驱动因素。在最佳条件(pH 5.96, 0.88 M H₂SO₄,274 rpm, 12.5 g/200 mL料液比)下,ANFIS预测Cu(II)回收率为99.8%,实验验证。动力学分析证实产物层扩散控制(R²> 0.99),支持低活化能(17.96 kJ/mol)和高pH/固比下的速率抑制。人工神经网络(10个隐藏层,4个输入)优于ANFIS,实现了更高的预测精度(R²= 0.995 vs. 0.986)和更低的误差(RMSE: 0.061 vs. 0.129)。在性能指标中,R²是最关键的,这表明两个模型都能解释98.6%的浸出行为差异,远高于可靠的工业预测的可接受阈值(R²> 0.9)。异常低的RMSE值(<0.13)进一步证实了实验结果与预测结果之间的最小偏差。这种混合框架将机械洞察力与人工智能驱动的优化相结合,在为可扩展应用程序诊断限速步骤的同时,比传统方法提供15 - 20%的效率提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信